Give everyone a prize? Employee stock options in private venture-backed firms

John R. M. Hand
Kenan-Flagler Business School
UNC Chapel Hill
Chapel Hill, NC 27599-3490

Tel.: +1 919 962 3173
Fax: +1 919 962 4727
hand@unc.edu

This version: December 7, 2006

Keywords: Employee stock options; Option grant depth; Private venture-backed firms.

I am most grateful to two anonymous reviewers, and to J. Abarbanell, R. Bushman, G. Foster, J. Francis, C. Karuna, W. Landsman, D. Larcker, T. Lys, E. Maydew, D. Nissim, P. Oyer, P. Phan, C. Shi, E. Talmor, H. Zhang, and workshops at Columbia University, UNC Chapel Hill and UC Irvine for valuable comments. B. Hughes and VentureOne generously granted me access to their proprietary compensation and valuation databases. Financial support came from the Edward O’Herron, Jr. Fund for Distinguished UNC Faculty and the UNC Center for Entrepreneurship. Key data items used in this study were obtained under a nondisclosure agreement and may not be shared without prior approval from VentureOne.
Abstract

This study examines employee stock options in private entrepreneurial companies. I focus on private U.S. venture-backed firms because they are renowned for the intensity and organizational depth of their stock option grants. Contrary to simple stereotype, however, I show that 27% of U.S. venture-backed firms do not grant stock options to all employees. I seek to explain this by theorizing that the economic and legal settings in which venture-backed companies exist lead to both costs and benefits from the use of stock options to attract, compensate, incent, monitor, and retain certain employees, and that sometimes the costs exceed the benefits. I test the theory by determining whether variation in the organizational depth to which venture-backed firms grant employee stock options can be explained by proxies for these economic and legal costs. Such proxies include the fraction of employees who are in technical positions; the degree of flatness in the firm’s organizational structure; its proximity to other venture-backed companies; the number of patents it has been granted; and the fraction of equity held by venture investors. The results support the theory and thereby imply that venture-backed firms grant employee stock options in an economically sophisticated manner.
1. Executive summary

Despite the importance of employee stock options to entrepreneurial private companies, scholarly research to date has focused entirely on older, more mature publicly traded firms. This study seeks to at least partially close this gap by analyzing employee stock options in pre-IPO venture-backed U.S. firms, an important subset of all private companies. While relatively few in number, venture-backed firms are an increasingly important source of employment, innovation, revenues, and equity value in economies the world over.

Moreover, stock options have long been seen by firms and investors in the venture capital subsector as critical mechanisms through which technology-intensive and highly risky startups are able to attract, compensate, incent, monitor, and retain the right employees. Indeed, the venture community uniformly argues that without employee stock options, firms such as Apple, Genentech and Google would never have been able to create the dramatic new products, drugs, services, and societal wealth that they have over the past thirty years.

The particular focus of my paper is the organizational depth to which private U.S. venture-backed firms grant stock options. This is because although venture-backed firms are highly renowned for the comprehensive breadth and inclusiveness of their employee stock option grants, I show that contrary to simple stereotype, more than a quarter of them do not grant stock options to all their employees.

I argue that this unexpected finding can best be understood by theorizing that the economic and legal settings in which venture-backed companies exist lead to both costs and benefits from the use of stock options to attract, compensate, incent, monitor, and retain certain employees, and that sometimes the costs exceed the benefits. When the costs do exceed the benefits, sophisticated and rational top management will intentionally not give stock options to certain numbers or types of employees.

I test my hypothesis by evaluating the extent to which variation in the organizational depth to which venture-backed firms grant employee stock options can be explained by proxies for the economic and legal costs and benefits of stock option grant decisions. For reasons that are explained in the text of the paper, the proxies I use include the cash compensation of the firm’s lowest-paid employee; the fraction of a firm’s employees who are in technical positions; the firm’s organizational flatness; its proximity to other venture-backed companies; the number of patents it has been granted; the fraction of equity held by venture investors; and the age of the
firm. The idea behind the empirical analysis is that in a regression of the fraction of employees granted options on proxies for the economic and legal costs and benefits involved in the grant decision, estimated proxy coefficients that are significantly in the predicted direction are supportive of (although do not prove) the underlying theory.

For my tests, I use a large, detailed, and recent survey-based dataset provided by VentureOne. VentureOne’s proprietary data enable me to overcome one of the most significant barriers to researching employee stock options in private companies, namely that U.S. regulators make no requirements that private firms have to disclose information about the stock options that they grant to their employees. Moreover, unlike data used for research into broad-based employee stock option plans in public companies, VentureOne’s dataset reports the exact fraction of employees who receive stock options.

My empirical findings demonstrate that the majority of the estimated coefficients on the proxies for the costs and benefits of granting employees stock options are significant and in the predicted directions. This implies that venture-backed firms do not unthinkingly grant stock options to all their employees. Instead, they act as if they weigh the economic costs and benefits involved and set the organizational stock option grant depth in a quite sophisticated manner.

I interpret these results as boding well for the efficient allocation of entrepreneurial capital and labor in the highly uncertain but crucially important formative stages of technology-intensive firms’ life-cycles. I also conclude that further theoretical and empirical research into the full set of compensation mechanisms used by private firms to solve common agency and human resource problems facing entrepreneurs and entrepreneurial firms—of which stock options are but one part—is both warranted and likely to be worthwhile.
2. Introduction

This study is the first to examine employee stock options in private entrepreneurial companies. For at least a quarter century, firms and venture investors have viewed stock options as critical means through which technology-intensive and highly risky startups can attract, compensate, incent, monitor, and retain the right employees. Indeed, it is plausible to argue that watershed companies such as Apple, Genentech, and Google either might never have succeeded, or at best would have been severely hampered in their ability to create new technologies, products, and wealth (Heesen, 2004) were it not for employee stock options. To date, however, academic research into employee stock options has centered exclusively on publicly traded firms (e.g., Blasi et al., 1996; Yermack, 1995, 1997; Core and Guay, 2001; Ittner et al., 2003; Murphy, 2003; Oyer, 2004; Oyer and Schaefer, 2005; Lam and Ho, 2006; Yanadori and Marler, 2006).

My paper seeks to partially redress this imbalance by exploring how and why employee stock options are granted in private venture-backed U.S. companies (hereafter denoted as ‘venture-backed firms’). Despite comprising only a small fraction of all privately held U.S. companies, venture-backed firms are an important entrepreneurial subset to study because of their disproportionate impact on U.S. employment, innovation, revenues, and equity values (Gompers and Lerner, 2001; NVCA, 2004; Stolis and Goodman, 2004). They have also been much studied by scholars in a wide range of business disciplines, including accounting (e.g., Hand, 2005), entrepreneurship (e.g., Dushnitsky and Lenox, 2005), finance (e.g., Kaplan and Strömberg, 2004) and strategy (e.g., Shepherd et al., 2000; Campbell et al., 2003).

The stereotypical venture-backed firm is lionized for the inclusiveness and intensity of its stock option grants, even to the point of supposing that all venture-backed firms ‘give every employee a prize’ in the form of stock options, no matter what their position in the organization. I show that this stereotypical view is incorrect. Specifically, using a large proprietary dataset provided by a leading venture capital research firm, VentureOne, I demonstrate that some 27% of U.S. venture-backed firms do not grant stock options to all their employees, and within this group, the mean fraction of employees not granted stock options is 39%.

I argue that this unexpected finding is best understood by theorizing that the economic and legal settings in which venture-backed companies exist lead to both costs and benefits from the use of stock options to attract, compensate, incent, monitor, and retain certain employees, and that sometimes the costs exceed the benefits. When the costs do exceed the benefits,
sophisticated and rational top management will intentionally not give stock options to certain
numbers or types of employees.

I test this hypothesis by evaluating the extent to which cross-sectional variation in the
organizational depth to which venture-backed firms grant employee stock options (denoted
FRACOP) can be explained by proxies for the economic and legal costs and benefits of stock
option grant decisions. I develop a model of FRACOP that significantly extends the conceptual
and empirical framework used by scholars that have examined the determinants of broad-based
stock option plans in public companies (Core and Guay, 2001; Hillegeist and Peñalva, 2003;
Oyer and Schaefer, 2005). Many of the cost and benefit proxies I use are unavailable in public
companies, such as the cash compensation of the firm’s lowest paid employee; the fraction of a
firm’s employees who are in technical positions; the firm’s organizational flatness; and its
geographic proximity to other venture-backed companies. The idea behind my empirical
analysis is that in a regression of the fraction of employees granted options on proxies for the
costs and benefits involved, estimated proxy coefficients that are significant in the predicted
direction are supportive of (although do not per se prove) the theory.

Beyond its size, scope, and recency, VentureOne’s proprietary data also enable me to
overcome one of the significant barriers to researching employee stock options in private
companies, namely that U.S. regulators do not require private firms to disclose information about
the stock options that they grant to their employees. Moreover, unlike research into broad-based
employee stock option plans in public companies, VentureOne reports the exact fraction of
employees who receive stock options. The empirical results demonstrate that the majority of the
estimated coefficients on the proxies for the costs and benefits of granting employees stock
options are significant and have the predicted signs. My findings imply that venture-backed
firms do not mechanically grant stock options to all their employees. Instead, they act as if they
weigh the economic and legal factors that are involved and grant employee stock options in a
sophisticated manner.

In conclusion, I interpret the results of this study as boding well for the efficient allocation of
capital and labor in the highly uncertain but crucially important early stages of technology-
intensive firms’ life-cycles. I also conclude that further research into the full set of compensation
mechanisms used by private firms to solve agency and information asymmetry problems—which
stock options are but one part—is likely warranted and worthwhile.
The remainder of the paper proceeds as follows. Section 3 motivates the paper’s focus on employee stock options in venture-backed private firms. Section 4 develops the theory behind FRACOP and its model specification. Section 5 describes VentureOne’s database and reports descriptive statistics on key firm characteristics. Section 6 explains the econometric methods employed and details the empirical test results, and Section 7 concludes.

3. Motivation

Over the past thirty years, employee stock options have steadily grown to be the largest and most academically scrutinized component of senior management’s compensation packages (e.g., Hall and Murphy, 2003; Murphy, 1999, 2003; and the references therein). More recently, attention has begun to be paid to stock options granted to middle- and low-level employees through the study of broad-based stock option plans, where they exist (Blasi et al., 1996; Core and Guay, 2001; Ittner et al., 2003; Oyer, 2004; Oyer and Schaefer, 2005).

Although much has been learned from this literature, it is limited in the sense that it is based on the theoretical and empirical analyses of publicly traded companies. Very little scholarship exists that focuses on understanding the causes or consequences of employee stock options in private firms. I argue that rectifying this gap is important for four reasons.

First, not only does most entrepreneurship take place in private companies, but the risks and rewards of equity ownership are a key feature of entrepreneurial compensation. Whether entrepreneurship is defined as the creative destruction across markets via the conversion of new ideas into successful businesses (Schumpeter, 1950), or the taking of personal risk in the pursuit of uncertain business opportunities (Knight, 1967; Drucker, 1970), entrepreneurship manifests itself most strongly in the starting of, or working for, firms by founders and employees alike who are intent on creating and exploiting opportunities that could make them as part-owners wealthy. In this regard, stock options are the central means by which employees are made part-owners.

1 For example, a search of the abstracts, titles, and keywords of volumes 1-21 of the Journal of Business Venturing for the string “stock option” yielded one study that relates to employee stock options in private companies (Chua and Woodward, 1993). Similar searches of a wide variety of economics, entrepreneurship, finance, and management journals yielded no studies with that same focus. A search made on 12/4/06 of www.ssrn.com for the words “stock” and “option” and either “private” or “venture” in the Abstract field yielded no papers that directly relate to stock options in private firms. Gompers and Lerner’s seminal text The Venture Capital Cycle (2000), which summarizes and expands a large amount of research on venture-backed companies, mentions employee stock options in the context of compensation and/or the solution of agency problems between entrepreneurs and venture investors only once (p. 131). The same was true in Gompers and Lerner’s text The Money of Invention: How Venture Capital Creates New Wealth (2001, p. 54).
Second, employee stock options have long been seen by technology entrepreneurs and venture capitalists as being vital mechanisms through which high-risk, high-return startups are able to attract, compensate, incent, monitor, and retain the right kinds of employees. Although venture-backed firms are only a small fraction of U.S. private companies (Fenn et al., 1995; Moskowitz and Vissing-Jørgensen, 2002), they are a large source of employment, innovation, revenues and new wealth (Gompers and Lerner, 2000, 2001; Grady, 2004; NVCA, 2004; Stolis and Goodman, 2004). In 2003, venture-backed firms employed over 10 million U.S. workers and generated $1.8 trillion in sales, equal to 9.4% of U.S. private sector employment and 9.6% of company sales. One of the main reasons for the growing influence of venture-backed companies is that they consist of almost exclusively of young, technology-driven companies from which many new discoveries and patents are created (Kortum and Lerner, 2000; NVCA, 2004). As such, it is worthwhile to understand how and why they use or misuse employee stock options.

Third, although one would expect that many of the fundamental determinants and effects of stock options in venture-backed firms would be the same as those in public companies, private venture-backed firms exist in a markedly more extreme and potentially more informative setting than do public companies. As emphasized by Wright and Robbie (1998) and Gompers and Lerner (2000), technology entrepreneurs and venture investors face incentive, risk, and information problems that are typically far greater than those experienced by managers in public companies. Technology entrepreneurs and venture investors concentrate in economic sectors or industries where there is high technological and customer uncertainty, intense information asymmetry, substantial intangible assets, and rapid competitive entry and exit. As a result, both the costs arising from agency problems, and the benefits from solving them, are very high.

Finally, the distinctiveness of venture-backed firms’ economic setting can lead to new questions being asked, new theories being developed, and/or new data being brought to bear—not simply the replication of findings that already exist for public companies. This is the case in my study, in that I am able to significantly extend the conceptual framework used by scholars that have examined the determinants of broad-based stock option plans in public companies; to measure the organizational depth to which employee stock options are granted more accurately than has been possible in public company studies; and to develop new and/or more precise proxies for the economic costs and benefits that theory suggests will determine the stock option grant depth.
4. Theory

4.1. Overview

Although there are many research-relevant dimensions of employee option plans in venture-backed firms, in this study I focus on understanding the organizational depth to which venture-backed firms grant stock options. This is because while venture-backed firms are renowned for the inclusiveness and intensity of their employee stock option grants (White, 2003; Grady, 2004), I find that, contrary to stereotype, 27% of them do not grant stock options to all employees, and in this group, the mean fraction of employees not granted stock options is 39%.

I argue that this somewhat unexpected result can best be understood by theorizing that management of private venture-backed firms are rational, and as such, will intentionally not give stock options to certain numbers or types of employees when the corporate costs of granting those stock options exceed the benefits. I now turn to flesh out this theory by modeling the costs and benefits that I propose are involved, given the economic setting that venture-backed firms operate in, namely a business environment dominated by technology assets, high levels of uncertainty and intense information asymmetry.

4.2. A Model of the Organizational Depth to Which Venture-Backed Firms Grant Employee Stock Options (FRACOP)

The starting point for my model is a conventional agency-theory framework in which venture investors delegate to managers the decision rights over employee compensation. In turn, managers set the fraction of employees who receive stock options, FRACOP, at the level that optimally attracts, compensates, incents, monitors, and retains employees, bearing in mind the associated corporate-level costs and benefits involved.

I model FRACOP as a function of a variety of the economic factors that typically characterize the business, legal and technology landscape facing private venture-backed firms: intangible technology assets, uncertainty, risk, and growth options. Specifically, I hypothesize that cross-sectional variation in FRACOP is associated with the following variables in a linear manner:

2 This approach is similar to that pursued by scholars who have studied broad-based employee stock option plans in public companies. I summarize the public company literature in Appendix A.
FRACOP_i = \alpha_0 + \alpha_1 \ln(\text{Cash compensation in}$000s \text{ of the lowest-paid employee}_i)
+ \alpha_2 \text{Fraction of employees who are Technical}_i
+ \alpha_3 \ln(1 + \{\#VPs \text{ per employee}_i\})
+ \alpha_4 \text{Fraction of sample firms in same tel. area code}_i
+ \alpha_5 \ln(1 + \#\text{Patents granted}_i)
+ \alpha_6 \ln(\text{One-year-ahead forecasted employee growth}_i)
+ \alpha_7 \ln(\text{One-year-ahead forecasted revenue growth}_i)
+ \alpha_8 \text{Fraction of shares held by venture investors}_i
+ \alpha_9 \ln(1 + \text{Firm age in years}_i)
+ \beta_1 \text{Indicator for 2005}_i + \varepsilon_i \tag{1}

Several of the variables in equation (1) derive from prior work that has examined general aspects
of stock options granted to and held by senior managers in public companies. Others come from
more recent research into stock options granted to lower-level employees in public firms. Yet
others are new to the literature due to the unique data available for venture-backed firms. For
purposes of robustness, I estimate not only equation (1) per se, but also a more limited version of
equation (1) in which FRACOP is replaced by a binary variable FRACOP\{0,1\}. The variable
FRACOP\{0,1\} is defined as being identical to FRACOP except that values of FRACOP less than
one are recoded as zero. In subsections 4.2.1 – 4.2.9, I describe each explanatory variable and
predict its sign under the assumption that firm management is economically sophisticated.

4.2.1. Cash compensation of the lowest-paid employee

When a young technology company receives its first injection of venture capital, venture
investors take an active role in helping the founder(s) to professionalize its management by
assisting in the hiring of key senior-level business, scientific, and technical personnel (Hellman,
2000; Hellman and Puri, 2002). The marginal product of such employees in creating equity
value will be high. However, as venture-backed companies grow, their hiring will become more
oriented toward lower-level employees, whose marginal product is far lower. This, together with
high incentives facing low-level employees to free ride off the value-creation activities of more
senior employees (Alchian and Demsetz, 1972; Holmstrom, 1982), leads to the prediction that as
the number of employees increases, it becomes unprofitable to incent and/or compensate
employees deep in the organization using stock options.
To test this prediction, I use the total annual cash compensation of a firm’s lowest-paid employee (subject to a minimum of $10,000) rather than the number of employees for two reasons. First, it might be that it is always optimal to grant options to a fixed number of any firm’s most senior executives. This would create an artificial negative correlation between FRACOP and the number of employees. Second, the cash compensation earned by the firm’s lowest-paid employee is arguably a more direct measure of the marginal product of the class of employees for which granting stock options is profitable for marginal productivity/free riding reasons. The prediction that follows from using the cash compensation of the lowest-paid employee in equation (1) is that $\alpha_1 > 0$.

4.2.2. Technical employees

I hypothesize that FRACOP will be positively related to the fraction of employees employed in technical positions, viz., $\alpha_2 > 0$. Venture-backed firms greatly rely on technology to create value. As a result, employees working in technical areas such as engineering, IT, and R&D will have a greater ability to affect equity value than will other employees, leading them to be better incentivized and more likely to be retained through stock options (Ittner et al., 2003).

4.2.3. Organizational flatness

Rajan and Zingales (2001) propose that in the early years of a firm’s life, the entrepreneur must provide incentives to her employees to develop, rather than expropriate, the firm’s key assets or ‘business model.’ However, in order to extract the rents inherent in her business model, she has to give her employees access to the critical resources that are required for production. This increases the likelihood that those employees will steal those resources. Rajan and Zingales propose that the entrepreneur can mitigate this concern by creating a flat, rather than hierarchical, organizational structure, because then no one subordinate will have enough organizational power to overcome her. In turn, the dampening effect that such flattening has on the employees’ incentives to invest in specialized human capital is overcome by spreading the expected rents from ownership widely by granting stock options broadly within the organization.

3 Technology is the set of methods and innovations that enable existing physical resources to be transformed into new physical resources. The reconfiguring of physical objects that technology makes possible boosts productivity, spawns new opportunities for profit, and ultimately drives economic growth (Romer, 1999).
Such reasoning leads to the prediction that there will be a positive association between
FRACOP and the extent of the firm’s organizational flatness, viz., $\alpha_3 > 0$. The proxy that I use
for the flatness of a firm is the number of vice presidents it has per employee. The position of
vice president is a common and visible boundary between lower-level employees and senior
management. As in Rajan and Zingales’ model, the typical VP also has a material but not a
dominant amount of power and responsibility. Therefore, I propose that the higher the density of
a firm’s VPs, the organizationally flatter the firm.\(^4\)

4.2.4. *Linking employees’ compensation to labor market conditions*

Venture-backed firms’ technology-dominated assets lead them to want to retain employees
with strong business, scientific, or technical abilities, especially when the labor markets for such
employees are tightest. Although stock options with multiyear vesting periods are widely
viewed as a powerful way to retain such personnel, until recently it was unclear why firms would
choose stock options as the retention mechanism when they could achieve the same goal using
any type of compensation that would be forfeited were the employee to leave the firm.

Oyer (2004) provides a solution to this puzzle centered on the assumptions that employee
turnover and pay parameter adjustments (such as the cutting of nominal pay) are costly, and
firms’ stock prices are positively related to the tightness of the labor market(s) they face. Oyer
proposes that firms use stock options to retain employees because they index the value of
employees’ deferred compensation to the value of their outside opportunities. That is, stock
options ensure that the value of an employee’s total compensation is highest precisely when her
outside opportunities are greatest and lowest when her opportunities are fewest. In Oyer’s
model, broad-based stock option plans are more likely the larger are the costs that firms face in
replacing employees, the higher the variance of common shocks to firms in a given labor market,
the greater employees’ risk tolerance, and the higher the variance in local market wages.

Based on Oyer’s model, I hypothesize that FRACOP will be positively related to the
geographic density of venture-backed firms, under the argument that the greater their geographic

\(^4\) As noted by Rajan and Wulf (2004), there is little research that systematically characterizes the structure of
organizational hierarchies across firms. This is mainly due to a lack of publicly available data on firms’ personnel
positions beyond that required to be disclosed in SEC filings (i.e., compensation of the five most highly
compensated executive officers). Rajan and Wulf measure organizational flatness as the number of positions
between the CEO and the divisional CEO, where the division is the lowest level of profit center responsibility for a
business unit. The dataset that I use does not have this information.
density, the higher will be the variance of common shocks that they face and the higher will be the variance in local market wages (Oyer, 2004, p. 1631–1632). The variable that I use to measure the geographic density of venture-backed firms is the fraction of the sample that shares a given telephone area code. In terms of equation (1), the prediction on this independent variable is therefore that \(\alpha_4 > 0 \).

4.2.5. Retaining expert human capital

As noted in Section 4.2.2, venture-backed firms hire a large number of employees with expert technical and scientific human capital because their assets and growth options are technology-intensive. I therefore predict that the importance of retaining employees using stock option grants made deeply into the organization will be increasing in the importance of both firms’ technology-based assets-in-place and their technology-based longer-term growth options.

As proxies for the former, I use the one-year-ahead forecasts made by management of their firm’s growth rate in employees and in revenues. This supposes that these measures are associated with the short-term benefits that are expected to be realized from current or near-term technology assets. In contrast, I use the number of patents already granted to the firm as a proxy for the firm’s longer-term technology-based growth option assets. Because of its strong relationship to R&D, the number of patents has been used as a measure of the firm’s long-horizon growth options in young firms such as venture-backed biotech companies (e.g., Lerner, 1994). For all three variables, the prediction in equation (1) is that there will be a positive relation between the variable and \(FRACOP \) (viz., \(\alpha_5 > 0, \alpha_6 > 0, \alpha_7 > 0 \)).

4.2.6. Efficient monitoring of managers by venture investors

Agency theory suggests that investors may use stock options as a substitute for direct monitoring of managers because doing so helps align the unobservable portion of managers’ actions toward maximizing firm value rather than consuming perquisites or free riding. If so, then venture capital investors, who usually comprise the largest set of shareholders in a venture-backed firm, will rely more on employee stock options the weaker their ability to directly monitor the firm’s employees. I propose that the smaller the venture investors’ interests in a firm’s equity, the more likely this situation is to occur (Ittner et al., 2003). The efficient
monitoring hypothesis therefore predicts that $FRACOP$ will be negatively related to $FRACEQVC$, the fraction of total equity held by venture capital investors, viz., $\alpha_8 < 0$.

4.2.7. Peculiarities of the tax code

A contrasting view of the relations between $FRACEQVC$ and $FRACOP$ to that of Section 4.2.6 arises from considering the impacts of certain peculiarities in the tax code pertinent to venture-backed firms. These peculiarities are discussed in detail by Gilson and Schizer (2003). In their paper, Gilson and Schizer explain how tax issues play a key role in incentivizing employees in entrepreneurial firms. Specifically, they argue that among the reasons why VCs invest through convertible preferred stock, rather than common stock, is that the use of convertible preferred stock enables venture-backed firms to greatly lower the tax costs borne by managers and the firm if and when managers are incentivized through stock options.

The dramatic reduction in tax costs comes about because of the IRS’ apparent willingness to subsidize venture capital investments by accepting what Gilson and Schizer argue is an “economically naïve” view of the relative values of the liquidation preference and common stock components of the convertible preferred price (Gilson and Schizer, pp. 898-899). Gilson and Schizer note that practitioner-based convention frequently applies the so-called “ten-to-one rule” to the relative values, wherein nine-tenths of the value of the convertible preferred price paid by the venture investor is ascribed to liquidation value, with only one-tenth of the price being ascribed to the common stock component (Gilson and Schizer, footnote #86, pp. 900-901).

The result of this artificially low—but IRS de facto permitted—valuation of the firm’s common stock is that it enables the firm at or around the time of a preferred stock venture financing to issue stock options to employees at an “at-the-money” strike price that is artificially low. This greatly reduces the tax cost of incentivizing managers because it transmutes a large fraction of an employee’s total compensation derived from stock-based compensation into investment return, rather than ordinary income. Given the typically lower tax rates on capital gains relative to ordinary income, plus the cash flow deferral benefits, this transmutation will be

5 Gilson and Schizer note that despite the aggressiveness and economic implausibility of ascribing 90% or more of the VC’s convertible preferred stock price to liquidation value, “[t]he Internal Revenue Service has never challenged successfully the view that the issuance of shares with a liquidation preference—ordinarily labeled preferred stock—can ‘eat up’ value in an amount equal to the preference, thereby reducing the common stock (the ‘cheap stock’) to marginal value” (p.899).
strongly preferred by employees, and will therefore lower the cost to the firm of providing the employees with a given dollar amount of compensation.

I argue that a key implication of Gilson and Schizer’s tax-code-peculiarities view is that in the cross-section of private venture-backed firms, \(\text{FRACOP} \) will be positively associated with the relative importance of preferred stock in firms’ capital structures. The reasoning behind this prediction is that the greater the fraction of a firm’s capital needs that are met by issuing preferred stock to venture investors (and 95% of investments made by venture funds are in the form of preferred stock (see Gilson and Schizer, p.879), the lower is the fraction of capital needs that are met by issuing common stock and the lower is the opportunity for the IRS to argue that there is a objective and ‘high’ arms-length common stock price that should be used in the setting of “at-the-money” employee stock options, rather than a subjective and ‘low’ implied common stock price derived from venture investments in preferred stock. I test this prediction by using the same variable as in Section 4.2.6, viz. \(\text{FRACEQVC} \), the fraction of common and preferred equity held by venture investors, as a proxy for the relative importance of preferred stock in firms’ capital structures.\(^6\) However, in contrast to the prediction made by agency theory in Section 4.2.6 that \(\alpha_8 < 0 \), the tax-code-peculiarities theory predicts that \(\alpha_8 > 0 \).\(^7\)

4.2.8. Stock options as a source of financing

Since granting employee stock options involves no outlay of cash by the firm, the more its employees’ total compensation is tilted toward stock options, the less are the cash demands put on the firm. Thus, all else held equal, stock options are a source of financing (Yermack, 1995; 15)

\(^6\) In doing so, I drop the managerial power and rent seeking viewpoint previously proposed in section 3.2.7.

\(^7\) Another implication of the tax-code-peculiarities view is that all else held equal, private venture-backed firms will on average use stock options to a greater degree than will public firms. This “mean difference” in the use of employee stock options should occur because [1] venture investors predominantly channel their injections of equity capital into private firms using preferred, not common, stock, while public companies rarely issue preferred stock; [2] there is much greater ambiguity about the value of common stock in a private company than there is in a public company; and [3] the IRS appears willing to let private venture-backed firms exploit this ambiguity. Therefore the tax costs to private venture-backed firms of granting stock options to employees are lower than they are to publicly traded firms. As a result of this cost advantage, I would expect that private venture-backed firms would on average grant employee stock options more deeply into their organization. However, because the focus of my paper is solely on private venture-backed firms, testing this prediction lies outside the scope of my paper. Having said this, extant evidence does suggest that a far smaller fraction of public companies grant stock options to all their employees than do private venture-backed firms. For example, a 2002 survey conducted by the National Opinion Research Center of the University of Chicago indicated that among public companies with 500 or more employees, only 23% percent use broad-based stock option plans (defined as a plan in which at least 50% of employees are eligible to receive stock options).
Core and Guay, 1999, 2001) and an important part of a comprehensive human resource management program (Blasi et al., 1996, 2003; Liccione, 2002; Lam and Ho, 2006).

I therefore predict that the more cash constrained are private venture-backed firms, the more likely they are to grant options deeply to their employees in order to conserve cash. The ideal variable to measure the degree to which a firm is cash constrained would be its current free cash flow (i.e., after-tax cash from operating activities less capital expenditures). Because this variable is not in VentureOne’s dataset, I use the age of the firm as an inverse proxy for cash constraints under the plausible assumption that the younger a firm is in the VentureOne dataset, the less likely the firm is to be ‘cash-flow positive’ and the more likely it is to be cash constrained. In terms of equation (1), I therefore predict that $\alpha_9 < 0$.

4.2.9 Control variable

In addition to the variables detailed above, I include an indicator for whether the data come from the 2004 or 2005 survey. This seeks to control for any fixed effects arising from macroeconomic or other calendar time-based factors. I make no prediction about the sign of the coefficient on this variable.

5. Data

The data in this study come from detailed and proprietary surveys conducted by VentureOne in spring 2004 and spring 2005.\(^8\) In each survey, VentureOne emailed a multi-page web-based compensation questionnaire to each of the approximately 5,000 venture-backed firms in its comprehensive financing database that it classified at the time as being private and independent. The questionnaire asked each firm to provide a broad set of compensation- and business-related information. For example, firms were asked to report the dollar values of the base salary, bonus, and other cash compensation of every employee (up to a maximum of 50 people from the most senior person down); the total shares of founder’s stock and exercised and unexercised options that each held; and the total fully diluted and common shares the firm had outstanding. In terms of business information, VentureOne asked each firm to provide its actual revenues for its most recent fiscal year and expected revenues for its current fiscal year, as well as the number of employees at the end of its most recent fiscal year and the number it expected to have at the end.

\(^8\) The author was generously granted access to VentureOne’s data after signing a nondisclosure agreement.
of its current fiscal year. Of primary interest to this study, each firm was asked the number (and therefore from simple computation the fraction) of employees that receive stock options.

The results of the compensation survey were then merged with VentureOne’s financing and general support databases. VentureOne’s financing database contains a record of each firm’s equity financing history, where available. For each round of funding, the financing database reports the amount of money raised, when the round closed, the pre- and post-money valuations, the type of round (e.g., First, Second, Individual Investor), the firm’s business status (e.g., Startup, Product Development, Shipping), and the ID code and type of each investor that participated in the round. The general support database contains general information about each firm, such as its industry, state, and telephone area code, as well as details on current and former senior management and board members, such as their title, type (e.g., outside board member, venture investor board member), and whether they are or were one of the firm’s founders.

Of the approximately 7,000 venture-backed firms to which VentureOne emailed its compensation surveys in 2004 and 2005, a total of 1,296 responses were received. Of these, 42 were eliminated because the firm had been acquired or merged, was already public or in IPO registration, or had gone out of business. This yielded 1,254 usable firm-year observations from private and independent venture-backed companies.

Two types of restrictions were placed on the 1,254 usable firm-year observations. First, 193 observations from the 2004 survey were excluded because the firm involved had responded to both the 2004 and 2005 surveys. Second, 209 observations were deleted because they did not have all the data needed to estimate equation (1). After applying these restrictions, there remained a sample of 852 firm-year observations for which equation (1) can be estimated, prior to empirically addressing in Section 6.2 concerns as to the endogeneity of the independent variables in equation (1), most notably $FRAEVC$, the fraction of equity held by VCs.

Descriptive statistics on a variety of the characteristics of the 852 sample firms are given in Tables 2 - 5. Sample firms vary by maturity, whether defined by the Series number of their most recent round of venture funding, by firm age, or by life stage (Table 2). For example, most recent venture financings range from Seed to 9th rounds, while life stages span the full spectrum from Startup to Profitable. Of the firms, 49% are Internet companies as defined by

9 The response rate of approximately 13% (= average of {795 + 501} / 5,000) compares favorably to that of other compensation surveys. For example, in a nonacademic study of a combination of public and private companies with broad-based stock option plans, Weeden et al. (2001) report a response rate of 10%.
VentureOne’s internal criteria, while 51% and 29% are classified as being in the IT and Healthcare sectors, respectively (Table 3). Thirty seven percent are headquartered in California. In Table 4 I report the mean number of employees by functional area. The average number of employees in a sample firm is 54. Of these, 46% are Technical, 13% are in Sales, and 11% are Administrative staff. Lastly, mean revenue, equity financing, and valuation results (Table 5) show that, as would be expected given their relative youth, the mean prior year revenue of sample firms is only $7.2 million—but the projected one-year-ahead revenue growth rate is a rapid 68%. The average post-money equity value at firms’ last financing rounds was $40 million, and in their last financing round (which took place an average of 1.6 years prior to the survey date) the mean amount raised was $10.0 million at a mean dilution of 36%.

Most importantly, the leftmost column of Table 6 shows that 232 out of 852 (27%) of all sample firms do not grant stock options to all their employees. Within such firms, where FRACOP < 1, the mean fraction of employees not granted stock options is 39%. These results run contrary to the simple stereotype that U.S. venture-backed firms are renowned for, namely that all of their employees receive stock options. I now turn to test the theory laid out in Section 4.2 as to why this occurs, as expressed in equation (1).

6. Econometric methods and empirical results

6.1. Univariate tests

In Table 7, I report the results of univariate tests of the directional predictions made in Sections 4.2.1–4.2.9 regarding the determinants of FRACOP, the fraction of firms’ employees granted stock options. Specifically, Table 7 shows the means of the main independent variables in equation (1) when FRACOP = 1 versus when FRACOP < 1, and the t-statistic on the difference in the means.\(^{10}\) For each independent variable listed other than the fraction of shares held by venture investors, the cost/benefit theory of stock option grant depth predicts that the mean of the variable will be greater when FRACOP = 1 than when FRACOP < 1.\(^{11}\)

\(^{10}\) Table 7 excludes the control indicator set to one if the observation is from the 2005 survey.

\(^{11}\) The difference in means for the fraction of shares held by venture investors is predicted to be negative if venture investors use employee stock options to align the unobservable portion of managers’ actions toward maximizing firm value rather than consuming perquisites or free riding (Section 3.2.6), but positive if a lower ownership holding by venture investors gives management more power that they then use to extract rents from lower level employees by excluding such employees from being granted options (Section 3.2.7).
The univariate results reported in Table 7 strongly support the directional predictions made by the economic cost/benefit theory of why private venture-backed firms do not always grant stock options to all their employees. Seven of the nine differences in means are reliably positive as predicted (variables 1 - 7). One difference in means is reliably positive where competing theories predict either a positive or a negative difference (variable 8 = FRACEQVC), while one difference in means is insignificantly different from zero (variable 9).

Table 8 reports the correlations between and among FRACOP and the explanatory variables. There are no indications of unduly high cross-correlations: the untabulated mean Pearson cross-correlation is 0.06, while the mean Spearman cross-correlation is 0.07. This lack of multicollinearity bodes well for the potential discriminatory ability of multivariate analysis.12

6.2. Endogeneity

Making accurate inferences from estimating equation (1) requires that the independent variables be exogenous, that is, uncorrelated with \(\varepsilon_i \), the error term in equation (1). Of all the proposed independent variables, I conjecture that the variable FRACEQVC—the fraction of shares held by VCs—is the one most likely to be endogenous. This is because as proposed in section 4.2.6, FRACOP and FRACEQVC may be substitute equity-type solutions for the same underlying monitoring-related agency problems.

I therefore selected three variables as candidate instruments for FRACEQVC. Each is conjectured to be correlated with FRACEQVC but uncorrelated with \(\varepsilon_i \):

[1] The maturity of the last venture financing round as measured by the number of venture financing rounds that had been undertaken by the company as of the survey date (NROUNDS). I expect NROUNDS to be positively associated with FRACEQVC because with each new financing round, VCs’ share of the firm’s total equity rises. I do not expect NROUNDS to be correlated with \(\varepsilon_i \) because the number of rounds of equity financing is unlikely to per se to be a substitute solution for the monitoring problem being addressed by incentivizing employees through the granting of stock options. (The same argument applies to the other two instruments below).

[2] The number of venture investors that sit on the company’s board (NVENTURE) as of the survey date. I expect this to be positively associated with FRACEQVC because it is usually

12 Supporting this conclusion, I find that when equation (1) is estimated using OLS, the variance inflation factors (VIFs) of the independent variables detailed in panel A of Table 8 were all less than 1.5. A commonly used rule of thumb is that only a variable whose VIF value exceeds 10 creates a material multicollinearity problem.
the case that a member of the lead VC fund in a new round of financing is added to the company’s board as a condition of the financing happening.

[3] The number of individual investors that sit on the company’s board (NVINDIV) as of the survey date. I expect this to be negatively associated with \textit{FRACEQVC} because venture investors will sometimes require that an existing individual investor who is on the board be replaced by a new venture investor as a condition of investing in the company.

The correlations among \textit{FRACEQVC} and \textit{NROUNDS}, \textit{NVENTURE} and \textit{NINDIV} are reported in panel B of Table 8, and are consistent with the predictions made above. Table 9 reports the multivariate results of regressing \textit{FRACEQVC} on \textit{NROUNDS}, \textit{NVENTURE} and \textit{NINDIV} and all other independent—and assumedly exogenous—variables in equation (1). As predicted, \textit{NROUNDS} and \textit{NVENTURE} are reliably positively associated with \textit{FRACEQVC}, while \textit{NINDIV} is reliably negatively associated with \textit{FRACEQVC}. Data requirements pertaining to \textit{NROUNDS}, \textit{NVENTURE} and \textit{NINDIV} reduce the number of observations from 852 to 722.

6.3. \textit{Multivariate tests of hypotheses expressed in equation (1)}

My primary method of estimating the multivariate relations between \textit{FRACOP} and its hypothesized determinants as expressed in equation (1) is through an as-if-right-censored Tobit model. In the Tobit model, observations with \textit{FRACOP} = 1 are treated as if they were right censored.13 This addresses the natural boundedness of the dependent variable by treating both the expected level of \textit{FRACOP} conditional on having \textit{FRACOP} < 1, and the probability of \textit{FRACOP} = 1, as manifestations of a common underlying latent variable process.14 In contrast to OLS, the estimates of the coefficients on the underlying latent explanatory variables in the Tobit model will be unbiased.15 However, while OLS coefficients measure the unconditional marginal effects of the independent variables, the coefficients on the latent explanatory variables in the Tobit model measure the conditional marginal effects. As a result, the magnitudes of the coefficient estimates obtained from the Tobit model can only be correctly interpreted if they are

13 For simplicity, I do not treat observations where \textit{FRACOP} = 0 as if they are left-censored at that level, because there are only four such data points out of the total of 852 observations.

14 The latent variable is a purely technical device, because \textit{FRACOP} is not in actuality right-censored. Censoring occurs when a sampling or data collection process is such that the researcher cannot observe the full range of the population model. This is not the case for \textit{FRACOP}, because stock options cannot be granted to negative numbers of employees nor to more employees than the firm has. When \textit{FRACOP} = 1, this reflects an economic choice by the firm, not a deficiency in the data.

15 OLS assumes that the error term is unbounded by virtue of being normally distributed. This is not so, because \textit{FRACOP} cannot be negative or exceed one. Parameter estimates obtained using OLS will therefore typically be biased toward zero as well as inconsistent.
made unconditional. This is achieved by multiplying them by the average estimated probability that an observation will be interior, that is, the average estimated probability that \(\text{FRACOP} < 1 \).

For purposes of robustness, I also estimate the parameters in equation (1) by fitting a binary logistic regression model in which \(\text{FRACOP} \) is replaced with \(\text{FRACOP}_{\{0,1\}} \). \(\text{FRACOP}_{\{0,1\}} \) is identical to \(\text{FRACOP} \) except that all values of \(\text{FRACOP} \) that are less than one are recoded as zero. Replacing \(\text{FRACOP} \) with \(\text{FRACOP}_{\{0,1\}} \) enables me to explore the more restricted question of which factors explain the binary decision of whether firms grant stock options to all versus less than all of their employees.

Panels A and B of Table 10 reports the results of estimating equation (1) using the Tobit and logistic methods, respectively. It is important to note that each method not only takes into account the potential endogeneity of \(\text{FRACEQVC} \), but also seeks to address possible survey selection bias through the inclusion of an inverse Mills ratio.\(^{16}\) In each panel, three regressions are reported. In the first (denoted Model 10.1), the residuals from Model 9.3 in Table 9 are included as an additional explanatory variable over and above the specification laid out in equation (1). This provides a Hausman (1978) type test of the endogeneity of \(\text{FRACEQVC} \). The results reject the null hypothesis that \(\text{FRACEQVC} \) is exogenous, because in both panels the estimated coefficients on the Model 9.3 residuals are at least three standard errors from zero.

However, as reported in Models 10.2 and 10.3 of panels A and B of Table 10, when the fitted values from Model 9.3 are used instead of \(\text{FRACEQVC} \), the results are consistent with \(\text{NROUNDS} \), \(\text{NVENTURE} \), and \(\text{NINDIV} \) being valid instruments for \(\text{FRACEQVC} \). Not only in Model 10.3 are the coefficient estimates on the Model 9.3 residuals insignificantly different from zero, but the coefficient estimate on the Model 9.3 fitted values are highly significant and positive. From the point of view of economic significance, Model 10.3 in Table 10 implies that

\(^{16}\) I estimated Heckman models separately for the Spring 2004 and Spring 2005 VentureOne compensation surveys. The variables that were included as potential determinants of whether a firm would or would not respond to VentureOne’s request to complete its survey were based on communications with VentureOne. VentureOne indicated that the most likely types of selection biases arose from: [1] Firms that had recently raised money wanting to get employee compensation in line with the market (which they could now do because they had more cash than before). The proxies I use to capture this are the date the firm closed its last round of financing, and the amount raised in the firm’s most recent round of financing (both of which are predicted to be positively related to participating in VentureOne’s survey); [2] Firms that are very young and use the results of the survey to help put their salary structures initially into shape. The proxy I use to capture this is the date the firm was founded; [3] Firms that are much older and therefore experience an internal push to access market-wide salary data for administrative purposes. The proxy I use to capture this is the maturity of the last financing round (the number of the round, e.g., 2nd = 2, 3rd = 3, etc.). Most coefficient estimates have the predicted signs. However, the adjusted R-squareds from OLS regressions on the same data are quite low (only about 2%), suggesting that the degree of selection bias with regard to which private venture-backed firms do versus do not respond to VentureOne’s survey may also be low.
at the mean of the independent variables, a one standard deviation increase in the fraction of equity held by VCs leads to a 4.9% increase in the fraction of employees granted stock options. As such, these findings strongly support the prediction derived in Section 4.2.7 from the tax-code-peculiarities argument of Gilson and Schizer—namely that \(FRACEQVC \) will be positively associated with \(FRACOP \). Moreover, the results simultaneously reject the competing prediction from Section 4.2.6 that stock options are granted deeply because they are used as a direct substitute for monitoring by VCs.

Beyond \(FRACEQVC \), the parameter estimates on the remaining independent variables in equation (1) are overall strongly consistent with the sign predictions made in Section 4.2 and the univariate results reported in Table 8. Specifically, using the percentage increase in the fraction of employees granted stock options associated with a one standard deviation increase in the independent variable at the mean of the independent variables —shown in \{.\} below—as the measure of economic significance (e.g., Lerner, 1994), Table 10 reveals that:

- In line with the expectation that the net benefits of compensating and incenting employees via stock options declines as the number of employees rises, \(FRACOP \) is reliably increasing in the cash compensation of the lowest-paid employee \{1.3\%\}.
- Consistent with the hypothesis that attracting and retaining technical expertise is vital to the success of venture-backed firms, \(FRACOP \) is reliably increasing in the fraction of employees with technical human capital \{3.3\%\}.
- Supporting the prediction derived from Rajan and Zingales (2001) that stock options will be granted more deeply into a firm the organizationally flatter it is, the estimated coefficient on the number of VPs per employee is reliably positive \{4.8\%\}.
- Oyer’s (2004) explanation for why firms grant stock options rather than other forfeitable compensation is strongly supported in that there is a reliably positive coefficient observed on the fraction of the sample that shares the firm’s telephone area code \{1.8\%\}.
- Consistent with the prediction that \(FRACOP \) will be larger the more important is a firm’s technology-based long-term growth options, I find a reliably positive coefficient on the number of patents granted to the firm \{1.9\%\}.
- A reliably positive coefficient is observed on managers’ one-year-ahead forecasts of employee growth \{1.7\%\}, but not on their one-year-ahead revenue growth forecasts.
- The coefficient on firm age, a proxy for the degree to which the firm’s cash constraints make granting stock options deeply a way of obtaining financing from employees, is not significantly different from zero \{0.5\%\}. This indicates that holding constant all the other independent variables in the regression, options are not granted more deeply when firms are more cash constrained.
In total, I interpret the results in Tables 7–10 as supporting the theory that private venture-backed firms decide on the organizational depth to which they grant employee stock options in a sophisticated manner that trades off many of the hypothesized economic and legal costs and benefits of attracting, compensating, incenting, monitoring, and retaining their employees. Moreover, the economic significance of the tradeoffs involved are sometimes quite material.

6.4. Robustness tests

Several additional tests were undertaken to assess the robustness of the results reported in Tables 8-10. First, heteroscedasticity does not appear to be a threat to the inference made in Section 6.3 in that for the analyses reported in Table 9 and panel B of Table 10, White-type robust standard errors are highly similar to the non-robust standard errors. Second, employing a probit model instead of a logistic model to estimate the relations between $FRACOP_{(0,1)}$ and the independent variables detailed in equation (1) yielded virtually identical parameter estimates and standard errors to those reported in panel B of Table 10.

Third, the possibility exists that the investing experiences and/or styles of different VCs lead them to influence firms’ management to grant stock options to different depths within the organization. Unfortunately, including fixed VC effects in the analysis is problematic because the typical round of venture financing includes multiple different VCs, and sometimes corporations and wealthy individuals as well. As a result, the number of different venture funds, corporations and individuals that had invested in my sample of venture-backed firms could exceed the raw number of sample firms, thereby rendering the regressions infeasible. An alternative, albeit less detailed approach that I undertook was to include as an additional explanatory variable denoted $FRACBDVC$, the fraction of the venture-backed firm’s board members that are coded by VentureOne as being venture investors (as of the time of the survey). If venture investors are more sophisticated than non-venture investors, they might be hypothesized to be more cognizant of the economic costs and benefits of granting employee stock options deeply into the firm’s organization. If so, one might expect that $FRACOP$ and $FRACBDVC$ would be positively associated. However, untabulated results indicate that the coefficient on $FRACBDVC$ is never reliably different from zero.

17 Neither SAS nor Stata permitted the Tobit model Table 10, panel A to be estimated with robust standard errors.
6.5. Caveats and limitations of the study

There are caveats and limitations that warrant acknowledgement. First, the analysis takes into account the stock option grant depth but not the magnitude of the incentives provided, as in Core and Guay (1999, 2001). Thus, some results could be simply capturing biases arising from omitted correlated variables. Second, explanatory variables other than \textit{FRACEQVC} may be materially endogenous to \textit{FRACOP}. Third, data limitations prevent the analysis from considering when in time firms make decisions on stock option grant depths. For example, stock options may be granted more deeply in venture-backed firms in hot-issue IPO markets. Finally, the unusual features of private venture-backed firms mean that the results may not generalize to other private firms or to public companies. As noted by Shane (2006), this is a common and challenging problem to overcome in entrepreneurship research.

7. Conclusions

Despite the importance of stock options to young, private venture-backed companies to the U.S. economy, prior academic research has concentrated exclusively on employee stock options in public companies. This study is the first to theoretically and empirically examine employee stock options in private entrepreneurial companies.

I showed that while U.S. venture-backed firms are renowned for the inclusiveness of their employee stock option grants, contrary to simple stereotype some 27% of venture-backed firms do \textit{not} grant stock options to all their employees. I then sought to explain this finding by theorizing that the economic and legal settings in which venture-backed companies exist lead to both costs and benefits from the use of stock options to attract, compensate, incent, monitor, and retain certain employees, and that sometimes the costs exceed the benefits. When they do, rational managers will not grant options to certain employees of their firms. I tested the theory by determining whether variation in the organizational depth to which venture-backed firms grant employee stock options can be reliably explained by a variety of proxies for both the economic and legal costs and benefits of stock option grant depth decisions. I found that the empirical results supported the theory, and imply that venture-backed firms grant employee stock options in a sophisticated manner that reflects many of the business tradeoffs involved.

My findings suggest that despite the intense uncertainty facing entrepreneurial companies, managers and venture investors in such firms act in an economically astute manner with regard
to employee stock options. From the point of view of entrepreneurship, the empirical results imply that while entrepreneurs may be prone to behavioral distortions arising from psychological traits and base decisions in part on non-profit-maximizing factors, these do not swamp the rational forces of value-maximizing pressures in their companies. The results of this study also suggest that it would be worthwhile to conduct further research into the total set of compensation mechanisms used by entrepreneurial young private firms to solve agency and information asymmetry problems and thereby create new technologies, products and wealth.

Appendix A

Summary of research into the determinants of broad-based employee stock option plans in publicly traded U.S. companies

In the first major study in the area of understanding the causes and consequences of broad-based employee stock options plans in public companies, Core and Guay (2001) analyzed the determinants of nonexecutive option holdings, option grants, and option exercises of 756 U.S. firms during 1994–1997. They find evidence that firms grant nonexecutive stock options for both incentive reasons and as a means of internal financing. Consistent with economic theory, Core and Guay observe that nonexecutives’ option incentives increase with firm size, firms’ growth opportunities, and the relative importance of human capital as a factor of production. Firms also appear to use more nonexecutive options as a substitute for cash compensation when they face cash flow constraints and high costs of external funds. Kedia and Mozumdar (2002) reach somewhat similar conclusions, while Jones et al. (2004) find that smaller firms and firms with higher intellectual capital indicators are more likely to use broad-based option plans, and that support for the liquidity constraints hypothesis is mixed.

Noting that broad-based stock option plans impose substantial risk on lower-level employees and suffer from free-rider problems, Oyer and Schaefer (2005) evaluate three potential explanations for why many firms issue options to all employees: a solution to moral hazard; a method of sorting on worker beliefs about the firm’s prospects; and an inexpensive means by which to retain employees by adjusting their pay to market conditions (Oyer, 2004). After rejecting the incentives-based explanation, they conclude that their data appear most consistent
with the sorting and retention explanations. In contrast, Bergman and Jenter (2005) find evidence consistent with the proposition that the popularity of option compensation for low-level employees is driven by boundedly rational employees who are excessively optimistic about their company’s stock and who have a strict preference for options over stock.

Focusing on “new economy” firms, Ittner et al. (2003) examine the determinants and performance consequences of equity grants to all types of employees—senior-level executives, lower-level managers, and nonexempt employees. They find that the determinants of equity grants differ significantly across old economy and new economy companies, and that new-hire option grants but not subsequent grants are significantly affected by firms’ employee retention objectives. Performance tests indicate that option grants and existing option holdings that are lower than expected are associated with poorer firm performance in subsequent years.

The influence of broad-based employee stock option plans on firm performance is also the focus of Hillegeist and Peñalva (2003) and Landsman et al. (2007). Hillegeist and Peñalva find that firms with unexpectedly high levels of both executive and nonexecutive option incentives exhibit significantly higher firm performance. Landsman et al. conclude similarly, but note that the relation seems stronger for nonexecutive options than for executive options. Finally, Inderst and Müller (2006) argue that the presence of specific human capital can make it optimal to link the compensation of low-level employees to total firm value even though there are negligible incentive effects because of standard free-riding problems. Their theory predicts that broad-based incentive pay should be more prevalent in riskier firms.
References

Table 1
Selection criteria applied to private venture-backed U.S. firms in VentureOne’s databases

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firms invited to participate in VentureOne’s Spring 2004 and Spring 2005 compensation surveys</td>
<td>≈ 5,000</td>
</tr>
<tr>
<td>Firms that responded to the 2004 survey</td>
<td>795</td>
</tr>
<tr>
<td>Firms that responded to the 2005 survey</td>
<td>501</td>
</tr>
<tr>
<td>Total</td>
<td>1,296</td>
</tr>
<tr>
<td>Less: Firms that:</td>
<td></td>
</tr>
<tr>
<td>Had been acquired or merged</td>
<td>20</td>
</tr>
<tr>
<td>Were in IPO registration</td>
<td>10</td>
</tr>
<tr>
<td>Were out of business</td>
<td>8</td>
</tr>
<tr>
<td>Were publicly traded</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
</tr>
<tr>
<td>= Private venture-backed firms that responded to VentureOne’s 2004 or 2005 surveys</td>
<td>1,254</td>
</tr>
<tr>
<td>Less: Firms that were in both 2004 and 2005 surveys (to keep the sample to one observation per firm, the firm’s 2005 survey information was not used)</td>
<td>193</td>
</tr>
<tr>
<td>= Firms with sufficient data for analysis of the fraction of their employees that are granted stock options</td>
<td>852</td>
</tr>
<tr>
<td>Of which:</td>
<td></td>
</tr>
<tr>
<td>2004 data</td>
<td>610</td>
</tr>
<tr>
<td>2005 data</td>
<td>242</td>
</tr>
<tr>
<td>Total</td>
<td>852</td>
</tr>
</tbody>
</table>
Table 2
Distribution of private venture-backed U.S. firms by financing round, age, and life stage

<table>
<thead>
<tr>
<th>Last round</th>
<th># obs.</th>
<th>Firm age (in years)</th>
<th>Startup</th>
<th>Product in devt.</th>
<th>Product in Beta test</th>
<th>Clinical trials</th>
<th>Shipping trials</th>
<th>Profitable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed</td>
<td>20</td>
<td>2.9</td>
<td>25%</td>
<td>65%</td>
<td>0%</td>
<td>0%</td>
<td>10%</td>
<td>0%</td>
</tr>
<tr>
<td>1st</td>
<td>236</td>
<td>4.1</td>
<td>6%</td>
<td>41%</td>
<td>2%</td>
<td>2%</td>
<td>44%</td>
<td>5%</td>
</tr>
<tr>
<td>2nd</td>
<td>221</td>
<td>5.7</td>
<td>24%</td>
<td>9%</td>
<td>4%</td>
<td>55%</td>
<td>7%</td>
<td>8%</td>
</tr>
<tr>
<td>3rd</td>
<td>146</td>
<td>6.3</td>
<td>7%</td>
<td>3%</td>
<td>10%</td>
<td>70%</td>
<td>9%</td>
<td></td>
</tr>
<tr>
<td>4th</td>
<td>73</td>
<td>6.8</td>
<td>0%</td>
<td>7%</td>
<td>3%</td>
<td>12%</td>
<td>71%</td>
<td>7%</td>
</tr>
<tr>
<td>≥5th</td>
<td>26</td>
<td>8.6</td>
<td>0%</td>
<td>8%</td>
<td>0%</td>
<td>12%</td>
<td>58%</td>
<td>23%</td>
</tr>
<tr>
<td>Other</td>
<td>130</td>
<td>8.5</td>
<td>0%</td>
<td>15%</td>
<td>2%</td>
<td>5%</td>
<td>65%</td>
<td>13%</td>
</tr>
</tbody>
</table>

“Other” financing rounds are those not specifically labeled as Seed through 9th. Percentages sum to 100% by row.

Table 3
Distribution of private venture-backed U.S. firms by key sectors and states (n = 852)

<table>
<thead>
<tr>
<th>Internet</th>
<th>IT</th>
<th>Healthcare</th>
<th>Retail/Svc.</th>
<th>Other</th>
<th>California HQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>49%</td>
<td>51%</td>
<td>29%</td>
<td>18%</td>
<td>2%</td>
<td>37%</td>
</tr>
</tbody>
</table>

Table 4
Mean employees in private venture-backed U.S. firms, by functional area (n = 852)

<table>
<thead>
<tr>
<th>All employees</th>
<th>Business employees</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>54</td>
<td>4.3</td>
<td>1.0</td>
<td>2.3</td>
<td>2.2</td>
<td>7.8</td>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td>Percent</td>
<td>100%</td>
<td>11%</td>
<td>3%</td>
<td>5%</td>
<td>5%</td>
<td>13%</td>
<td>46%</td>
<td>17%</td>
</tr>
</tbody>
</table>

Employees are as of the most recent fiscal year-end prior to the survey date.

Table 5
Mean revenues, equity values, and financing for private venture-backed U.S. firms

<table>
<thead>
<tr>
<th>Revenues ($ mil.)</th>
<th>Projected revenue growth (%)</th>
<th>Post-money equity value at last round ($ mil.)</th>
<th>Equity raised in last round ($ mil.)</th>
<th>Dilution in last round (%)</th>
<th>Time since last round (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior year</td>
<td>Current year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$7.2</td>
<td>$12.1</td>
<td>68%</td>
<td>$40</td>
<td>$10.0</td>
<td>36%</td>
</tr>
<tr>
<td># obs.</td>
<td>852</td>
<td></td>
<td>435</td>
<td>852</td>
<td>433</td>
</tr>
</tbody>
</table>

Mean projected revenue growth is calculated as the mean current-year revenues divided by mean prior-year revenues. The post-money equity value (dilution) at the last financing round is unknown for 417 (419) firms.
Table 6
Employee stock options and overall equity holdings for private venture-backed U.S. firms

Overall equity holdings are defined by VentureOne as the sum of all preferred stock, common stock, stock options granted (whether or not vested), and stock options available for future grants. FRACOP is the fraction of a firm’s employees that are granted stock options. N = 852.

<table>
<thead>
<tr>
<th>Last round</th>
<th>Percent of firms not granting options to all employees (FRACOP < 1)</th>
<th>Mean percent of employees not granted options when FRACOP is:</th>
<th>Percent of options granted to CEO or Pres.</th>
<th>Mean vesting period (years)</th>
<th>Percent of equity held by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed</td>
<td>30%</td>
<td>48%</td>
<td>46%</td>
<td>3.5</td>
<td>9.3%</td>
</tr>
<tr>
<td>1<sup>st</sup></td>
<td>28%</td>
<td>44%</td>
<td>46%</td>
<td>3.8</td>
<td>7.3%</td>
</tr>
<tr>
<td>2<sup>nd</sup></td>
<td>28%</td>
<td>37%</td>
<td>47%</td>
<td>3.8</td>
<td>6.0%</td>
</tr>
<tr>
<td>3<sup>rd</sup></td>
<td>19%</td>
<td>26%</td>
<td>48%</td>
<td>3.9</td>
<td>4.6%</td>
</tr>
<tr>
<td>4<sup>th</sup></td>
<td>23%</td>
<td>23%</td>
<td>48%</td>
<td>3.8</td>
<td>5.4%</td>
</tr>
<tr>
<td>≥5th</td>
<td>19%</td>
<td>55%</td>
<td>54%</td>
<td>4.0</td>
<td>6.1%</td>
</tr>
<tr>
<td>Other</td>
<td>37%</td>
<td>46%</td>
<td>46%</td>
<td>3.7</td>
<td>7.1%</td>
</tr>
<tr>
<td>All</td>
<td>27%</td>
<td>39%</td>
<td>47%</td>
<td>3.8 yr</td>
<td>6.3%</td>
</tr>
</tbody>
</table>

Table 7
Means of the hypothesized determinants of the fraction of employees granted stock options (FRACOP) in private venture-backed U.S. firms, for FRACOP = 1 versus FRACOP < 1

<table>
<thead>
<tr>
<th>Hypothesized determinant of FRACOP</th>
<th>Mean when FRACOP = 1 (n = 621)</th>
<th>Mean when FRACOP < 1 (n = 231)</th>
<th>t-stat. diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ln(Cash comp. of lowest-paid employee, in $000s)</td>
<td>4.38</td>
<td>4.23</td>
<td>3.2***</td>
</tr>
<tr>
<td>2. Fraction of employees who are Technical</td>
<td>0.49</td>
<td>0.39</td>
<td>5.0***</td>
</tr>
<tr>
<td>3. Ln(1 + # VPs per employee)</td>
<td>−2.28</td>
<td>−2.64</td>
<td>4.5***</td>
</tr>
<tr>
<td>4. Fraction of sample firms in same tel. area code</td>
<td>0.035</td>
<td>0.019</td>
<td>7.9***</td>
</tr>
<tr>
<td>5. Ln(1 + # Patents granted)</td>
<td>0.39</td>
<td>0.29</td>
<td>2.0**</td>
</tr>
<tr>
<td>6. Ln(One-year-ahead forecasted employee growth)</td>
<td>0.34</td>
<td>0.27</td>
<td>2.0**</td>
</tr>
<tr>
<td>7. Ln(One-year-ahead forecasted revenue growth)</td>
<td>0.86</td>
<td>0.68</td>
<td>2.8***</td>
</tr>
<tr>
<td>8. Fraction of shares held by venture investors</td>
<td>0.64</td>
<td>0.57</td>
<td>3.3***</td>
</tr>
<tr>
<td>9. Ln(1 + Firm age in years)</td>
<td>1.78</td>
<td>1.90</td>
<td>−3.4**</td>
</tr>
</tbody>
</table>

T-statistics on difference in means assume unequal variances across observations where FRACOP = 1 versus observations where FRACOP < 1. Inferences are very similar if equal variances are assumed. Single, double, and triple hash marks (asterisks) denote coefficient estimates that are reliably of the predicted sign at the 5%, 2.5%, and 1% significance levels, respectively, under a one-tailed (two-tailed) test. The control variables present in equation (1) are not included above because theory makes no clear sign prediction for them.
Table 8
Correlation matrices of [1] The fraction of employees granted stock options in private venture-backed U.S. firms (FRACOP) and proxies for the economic costs and benefits of attracting, incenting, monitoring, and retaining those employees, and [2] The fraction of equity held by venture investors (FRACEQVC) and candidate instruments

The sample is the set of 852 private venture-backed U.S. firms in VentureOne’s Spring 2004 and Spring 2005 compensation survey databases that satisfied the data requirements described in Table 1. Pearson (Spearman) correlations are above (below) the diagonal. Correlations greater than 0.065 in absolute magnitude are reliably significant at the 5% level under a two-tailed test. The predicted sign between FRACOP and each independent variable is shown in parentheses above the independent variable.

Panel A: Key variable = FRACOP

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FRACOP</td>
<td>0.02</td>
<td>0.25</td>
<td>0.27</td>
<td>0.20</td>
<td>0.11</td>
<td>0.08</td>
<td>0.09</td>
<td>0.17</td>
<td>–0.13</td>
<td></td>
</tr>
<tr>
<td>Ln(Cash comp. of lowest-paid employee, in $000s)</td>
<td>0.09</td>
<td>–0.23</td>
<td>0.13</td>
<td>–0.03</td>
<td>0.01</td>
<td>0.03</td>
<td>0.01</td>
<td>–0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraction of employees who are Technical</td>
<td>0.19</td>
<td>0.03</td>
<td>0.20</td>
<td>0.17</td>
<td>–0.00</td>
<td>0.05</td>
<td>0.06</td>
<td>0.03</td>
<td>–0.23</td>
<td></td>
</tr>
<tr>
<td>Ln(1 + {# VPs per employee})</td>
<td>0.15</td>
<td>–0.21</td>
<td>0.15</td>
<td>0.07</td>
<td>–0.02</td>
<td>0.01</td>
<td>0.08</td>
<td>0.00</td>
<td>–0.29</td>
<td></td>
</tr>
<tr>
<td>Fraction of sample firms in same tel. area code</td>
<td>0.24</td>
<td>0.11</td>
<td>0.16</td>
<td>0.07</td>
<td>0.11</td>
<td>–0.00</td>
<td>–0.02</td>
<td>0.12</td>
<td>–0.11</td>
<td></td>
</tr>
<tr>
<td>Ln(1 + # Patents granted)</td>
<td>0.08</td>
<td>–0.03</td>
<td>0.01</td>
<td>–0.03</td>
<td>0.07</td>
<td>–0.12</td>
<td>–0.11</td>
<td>0.07</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>Ln(1 + One-year-ahead forecasted employee growth)</td>
<td>0.07</td>
<td>0.04</td>
<td>0.02</td>
<td>–0.03</td>
<td>–0.02</td>
<td>–0.15</td>
<td>0.16</td>
<td>–0.01</td>
<td>–0.10</td>
<td></td>
</tr>
<tr>
<td>Ln(1 + One-year-ahead forecasted revenue growth)</td>
<td>0.08</td>
<td>0.04</td>
<td>0.03</td>
<td>0.04</td>
<td>–0.01</td>
<td>–0.14</td>
<td>0.17</td>
<td>0.04</td>
<td>–0.19</td>
<td></td>
</tr>
<tr>
<td>Fraction of shares held by venture investors</td>
<td>0.11</td>
<td>0.01</td>
<td>–0.00</td>
<td>–0.04</td>
<td>0.10</td>
<td>0.08</td>
<td>–0.05</td>
<td>0.02</td>
<td>–0.04</td>
<td></td>
</tr>
<tr>
<td>Ln(1 + Firm age in years)</td>
<td>–0.11</td>
<td>–0.02</td>
<td>–0.22</td>
<td>–0.30</td>
<td>–0.09</td>
<td>0.30</td>
<td>–0.12</td>
<td>–0.19</td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>

Panel B: Key variable = FRACEQVC

<table>
<thead>
<tr>
<th>Variable</th>
<th>[1]</th>
<th>[2]</th>
<th>[3]</th>
<th>[4]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRACEQVC</td>
<td>0.29</td>
<td>0.28</td>
<td>–0.09</td>
<td></td>
</tr>
<tr>
<td>Maturity of last venture financing round of equity*</td>
<td>0.34</td>
<td>0.33</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Number of venture investors on firm’s board</td>
<td>0.30</td>
<td>0.34</td>
<td>–0.12</td>
<td></td>
</tr>
<tr>
<td>Number of individual investors on firm’s board</td>
<td>–0.07</td>
<td>0.04</td>
<td>–0.10</td>
<td></td>
</tr>
</tbody>
</table>

* Maturity is defined as the number assigned by VentureOne to the firm’s last financing round (e.g., 2nd, 3rd, 4th, etc.). For this variable, N = 722 not 852, due to the fact that some firms’ last financing round before VentureOne’s survey were not equity financings.
Table 9
OLS regressions of the fraction of venture-backed firms’ shares held by venture investors (FRACEQVC) on candidate instruments

The sample is the set of 852 private venture-backed U.S. firms in VentureOne’s Spring 2004 and 2005 surveys satisfying data limitations per Table 1. OLS t-statistics are in parentheses. Single, double, and triple hash marks (asterisks) denote coefficient estimates that are reliably of the predicted sign at the 5%, 2.5% and 1% significance levels, respectively, under a one-tailed (two-tailed) test.

<table>
<thead>
<tr>
<th>Independent variables:</th>
<th>Predicted sign</th>
<th>Model 9.1</th>
<th>Model 9.2</th>
<th>Model 9.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.41</td>
<td>0.63</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(15.7)</td>
<td>(8.3)</td>
<td>(7.3)</td>
<td></td>
</tr>
<tr>
<td>Candidate instruments for FRACEQVC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maturity of last venture financing round of equity</td>
<td>+ 0.05</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6.0)###</td>
<td>(7.0)###</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of venture investors on firm’s board</td>
<td>+ 0.04</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.5)###</td>
<td>(5.2)###</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of individual investors on firm’s board</td>
<td>– –0.04</td>
<td>–0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(–2.5)###</td>
<td>(–2.3)##</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-instrument exogenous variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln(Cash comp. of lowest-paid employee in $000s)</td>
<td>–0.00</td>
<td>–0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(–0.3)</td>
<td>(–1.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraction of employees who are Technical</td>
<td>0.01</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.1)</td>
<td>(0.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln(1 + #VPs per employee)</td>
<td>–0.01</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(–0.5)</td>
<td>(1.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraction of sample firms in same tel. area code</td>
<td>0.84</td>
<td>0.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.1)</td>
<td>(1.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln(1 + #Patents granted)</td>
<td>0.02</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.9)</td>
<td>(0.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln(One-year-ahead forecasted employee growth)</td>
<td>–0.01</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(–0.3)</td>
<td>(0.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln(One-year-ahead forecasted revenue growth)</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.3)</td>
<td>(0.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln(1 + Firm age in years)</td>
<td>–0.02</td>
<td>–0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(–1.0)</td>
<td>(–2.5)###</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indicator = 1 if observation is from 2005 survey</td>
<td>–0.02</td>
<td>–0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(–0.9)</td>
<td>(–1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLS adj. R^2</td>
<td>0.13</td>
<td>0.01</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td># observations</td>
<td>722</td>
<td>852</td>
<td>722</td>
<td></td>
</tr>
</tbody>
</table>
Table 10
Regressions of the fraction of employees granted stock options (FRACOP) on proxies for the economic costs and benefits of attracting, incenting, monitoring, and retaining those employees

The sample is the set of 852 private venture-backed U.S. firms in VentureOne’s Spring 2004 and 2005 surveys satisfying data limitations per Table 1. Standard errors are in square brackets. Single, double, and triple hash marks (asterisks) denote coefficient estimates that are reliably of the predicted sign at the 5%, 2.5% and 1% significance levels, respectively, under a one-tailed (two-tailed) test.

Panel A: Estimation approach is as-if-right-censored Tobit (using a Normal error distribution)

<table>
<thead>
<tr>
<th>Independent variables:</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sign</td>
</tr>
<tr>
<td>Fraction of shares held by venture investors (FRACEQVC)</td>
<td>+</td>
</tr>
<tr>
<td>Fitted values of FRACEQVC from Model 9.3 in Table 9</td>
<td>+</td>
</tr>
<tr>
<td>Residuals from Model 9.3 in Table 9</td>
<td>?, 0</td>
</tr>
<tr>
<td>Ln(Cash comp. of lowest-paid employee, in $000s)</td>
<td>+</td>
</tr>
<tr>
<td>Fraction of employees who are Technical</td>
<td>+</td>
</tr>
<tr>
<td>Ln(1 + (#VPs per employee))</td>
<td>+</td>
</tr>
<tr>
<td>Fraction of sample firms in same tel. area code</td>
<td>+</td>
</tr>
<tr>
<td>Ln(1 + #Patents granted)</td>
<td>+</td>
</tr>
<tr>
<td>Ln(One-year-ahead forecasted employee growth)</td>
<td>+</td>
</tr>
<tr>
<td>Ln(One-year-ahead forecasted revenue growth)</td>
<td>+</td>
</tr>
<tr>
<td>Ln(1 + Firm age in years)</td>
<td>–</td>
</tr>
<tr>
<td>Indicator = 1 if observation is from 2005 survey</td>
<td>?</td>
</tr>
<tr>
<td>Inverse Mills ratio from survey selection model</td>
<td>?</td>
</tr>
</tbody>
</table>

right-corner (i.e., as-if-censored) values 539 539 539
Adj. R^2 of OLS regression on same data 0.16 0.16 0.16
observations 722 722 722

Note: Intercepts are estimated but not reported. Numbers in panel A that are in italics are the unconditional marginal effects implied by the Tobit model, viz., the nonitalicized latent parameter estimates multiplied by the average estimated probability that an observation will not be right-censored.
Table 10 (continued)

Panel B: Estimation approach is logistic regression on FRACOP{0,1}, where FRACOP{0,1} is defined as the FRACOP variable adjusted such that values of FRACOP < 1 are recoded as FRACOP = 0

<table>
<thead>
<tr>
<th>Independent variables:</th>
<th>Predicted sign</th>
<th>Model 10.1</th>
<th>Model 10.2</th>
<th>Model 10.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction of shares held by venture investors (\textit{FRACEQVC})</td>
<td>+</td>
<td>3.78</td>
<td>[1.00]###</td>
<td></td>
</tr>
<tr>
<td>Fitted values of \textit{FRACEQVC} from Model 9.3 in Table 9</td>
<td>+</td>
<td>3.80</td>
<td>3.78</td>
<td>[1.00]###</td>
</tr>
<tr>
<td>Residuals from Model 9.3 in Table 9</td>
<td>, 0</td>
<td>−3.32</td>
<td>0.46</td>
<td>[1.08]###</td>
</tr>
<tr>
<td>Ln(Cash comp. of lowest-paid employee, in $000s)</td>
<td>+</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td>Fraction of employees who are Technical</td>
<td>+</td>
<td>0.76</td>
<td>0.76</td>
<td>0.76</td>
</tr>
<tr>
<td>Ln(1 + {#VPs per employee})</td>
<td>+</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td>Ln(1 + #Patents granted)</td>
<td>+</td>
<td>0.16</td>
<td>0.17</td>
<td>0.16</td>
</tr>
<tr>
<td>Ln(One-year-ahead forecasted employee growth)</td>
<td>+</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
</tr>
<tr>
<td>Ln(One-year-ahead forecasted revenue growth)</td>
<td>+</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>Ln(1 + Firm age in years)</td>
<td>−</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Indicator = 1 if observation is from 2005 survey</td>
<td>?</td>
<td>−0.08</td>
<td>−0.08</td>
<td>−0.08</td>
</tr>
<tr>
<td>Inverse Mills ratio from survey selection model</td>
<td>?</td>
<td>−0.05</td>
<td>−0.05</td>
<td>−0.05</td>
</tr>
</tbody>
</table>

Percent concordant | 73% | 73% | 73% |
Adj. R^2 of OLS regression on same data | 0.16 | 0.16 | 0.16 |
observations | 722 | 722 | 722 |