Multi-product inventory planning with downward substitution, stochastic demand and setup costs

UDAY S. RAO, JAYASHANKAR M. SWAMINATHAN and JUN ZHANG

1 CBA, University of Cincinnati, Cincinnati, OH-45221-0130, USA
E-mail: uday.rao@uc.edu
2 Kenan-Flagler Business School, University of North Carolina, Chapel Hill, NC-27599, USA
E-mail: mssj.unc.edu
3 A. B. Freeman School of Business, Tulane University, New Orleans, LA 70118, USA
E-mail: jzhang4@tulane.edu

Received 7 April 2001 and accepted 14 July 2002

In this paper we consider a single period multi-product inventory problem with stochastic demand, setup cost for production, and one-way product substitution in the downward direction. We model the problem as a two-stage integer stochastic program with recourse where the first stage variables determine which products to produce and how much to produce, and the second stage variables determine how the products are allocated to satisfy the realized demand. We exploit structural properties of the model and utilize a combination of optimization techniques including network flow, dynamic programming, and simulation-based optimization to develop effective heuristics. Through a computational study, we evaluate the performance of our heuristics by comparison with the corresponding optimal solution obtained from a large scale mixed integer linear program. The computational study indicates that our solution methodology can be very effective (98.8% on average) and can handle industrial-sized problems efficiently. We also provide several new qualitative insights on issues such as the effect of demand variance and cost parameters on the optimal number of products setup, the amount produced or inventoried, and the benefits of allowing substitution.

1. Introduction

In this paper, we consider a single period, multi-product, stochastic inventory problem with substitution and setup costs. We allow a one-way downward substitution structure in that demand for product j may be satisfied only by using stock of those products i with $i \leq j$. This downward substitution structure occurs in several practical settings such as semiconductor chips (see Hsu and Bassok, 1999) where a faster processor can be substituted for a slower processor, memory chips (Leachman, 1987) and in the steel industry (Wagner and Whitin, 1958). Our motivation for studying this problem came from alternative modes of customization tried at IBM. Swaminathan and Tayur (1998) considered one of the alternatives which involved storing semi-finished inventory called vanilla boxes and then customizing the product after receiving the order. Another approach involved storing inventory of cadillac boxes which contain all (or most of) the features and then removing features (or giving them free) based on the actual demand realized. This latter approach corresponds to a multi-product inventory problem with downward substitution and setup costs under stochastic demand. The setup costs represent product-specific tooling and equipment costs for production or testing and managerial effort for handling the increased product variety.

In this paper, we present a model, properties and an effective solution methodology that exploits the problem structure and utilizes a combination of optimization techniques including network flows, dynamic programming and infinitesimal perturbation analysis. We also obtain qualitative and managerially relevant insights through a computational study. We focus on a single period problem corresponding to short (fast) cycle products. However, our approach may be applied to a multi-period problem in which the product set selection decision is made once at the beginning and cannot be revised later. In our model, there are N products and each product has a continuous stochastic non-negative demand with finite mean. Costs include setups, production, overage, stockout and substitution. There are three sets of decisions:

D1: which products to produce;
D2: how much to produce; and
D3: how to allocate products to satisfy realized demand.

Different versions of the substitution problem have been studied in the past (see literature review in Section 2).
However, to the best of our knowledge, none of the earlier work has considered multiple (more than two) products, stochastic demand, setup costs and product substitution in an integrated model. As shown in Herer and Rashit (1997), even for a two product problem with setup costs, it is not easy to characterize the optimal regions of initial inventory values for which no products, both products or only one product is produced. Hence, we focus on developing fast and effective heuristic solution methodologies for the multi-product problem.

We model this problem as a two-stage integer stochastic program with recourse. The first stage decisions, corresponding to D1 and D2 are made before demand is realized, while the second stage allocation decisions, D3, are made after demand materializes. For the first part of the problem, D1, we develop two heuristics, based on a stochastic demand version of the Wagner-Whitin algorithm, to determine the set of items to produce. We provide an optimal solution procedure for the second part, D2, through simulation-based optimization using Infinitesimal Perturbation Analysis (IPA). We formulate the third part, D3, as a network flow problem and present a single-pass greedy algorithm to solve certain instances of this problem. For small problem instances with discrete demand scenarios, we obtain an optimal solution for the entire problem using a large scale mixed integer linear programming (MILP) formulation.

Through detailed computational testing, we demonstrate that our algorithms find near-optimal solutions (on average, about 1.2% from optimal across a wide range of over 2000 problem instances). Further, we present qualitative managerial insights on various issues including: (i) the effect of demand variance and cost parameters on the optimal number of products setup and the amount produced/inventoried; (ii) the benefits of allowing substitution; (iii) the complicating effects of having starting inventory in the system. Among other results we find that: (i) the major portion of cost benefits due to flexibility of substitution result from considering substitution while selecting the set of items to produce and their production quantities, these benefits are more striking when the substitution costs are lower and demand uncertainty is higher; (ii) although substitution provides greater flexibility and cost benefits, the total inventory in a system with substitution may be larger than the corresponding inventory in a system without substitution; (iii) with setup costs and substitution permitted, as demand variability increases, the total number of setups almost always remains the same or decreases and the total amount produced could increase or decrease. The reduction in the amount produced/inventoried contradicts the traditional intuition that greater demand variability would increase inventory.

The contributions of this paper are: (i) incorporation of setup costs and more general substitution costs into related multi-product stochastic inventory models studied earlier; (ii) development of new and efficient solution heuristics which combine dynamic programming and simulation-based optimization while exploiting the network flow structure of the allocation problem; (iii) detailed computational validation of our solution methods which indicate that these are very effective in terms of accuracy (98.8% on average) and time, and are capable of solving large scale problems; (iv) computational results on several new qualitative managerial insights.

The rest of the paper is organized as follows: In Section 2, we review the relevant literature. In Section 3, we present the model formulation and some structural properties. We discuss solution methodology in Section 4 and present computational results in Section 5. We discuss model extensions in Section 6 and conclude in Section 7.

2. Relevant literature

Deterministic versions of the substitution problem have been studied by Chand et al. (1994) and Tripathy et al. (1999). In this section, we restrict our attention to the stochastic version. The multi-product inventory problem with one-way substitution and zero setup costs was originally considered by Ignall and Veinott (1969) and more recently by Bassok et al. (1999), where they demonstrate that myopic base-stock policies are optimal. Hsu and Bassok (1999) consider a single period problem with one input resulting in a random yield of multiple, downward substitutable products. They show how the network structure of the problem can be used to devise an efficient algorithm. Our model is different in that the unit substitution cost need not be identical as in Bassok et al. (1999), and, although we do not consider random yield, we allow setting up multiple products with associated setup costs as compared to a single product with no setup in Hsu and Bassok (1999). Further, our paper focuses on developing fast and efficient algorithms which we use in computational testing.

Two product problems with zero setup cost and two-way probabilistic substitution have been extensively studied. McGillivray and Silver (1978) consider a case where products have identical costs and there is a fixed probability that a customer demand for a stocked out product can be substituted by another available product. For the case where the substitution probability is one, Pasternack and Dreznner (1991) compare the optimal stacking levels to the corresponding inventory levels without substitution. For problems without setup costs, convex analysis and dynamic programming may be used to demonstrate optimality of base-stock policies. Incorporating setup costs results in several difficulties, since the cost function is no longer convex. As a result, the multi-product inventory problem with setup costs, substitution and random demand considered in this paper has not been adequately studied before. Herer and Rashit (1997) have shown that even for the two-product, one period special case, the optimal ordering policy is complex and cannot be characterized using extensions of the
single product (s, S) policy. This suggests that the optimal solution to the multi-product problem is also likely to be difficult to characterize, which necessitates use of effective heuristics.

There are several other research papers which are related to our problem. The Transshipment problem has been studied by Robinson (1990) and Herer et al. (2000). The Assortment problem was investigated by Pentico (1974, 1988) and the Component commonality problem by Gerchak et al. (1988) and Henig and Gerchak (1989). The Continuous review inventory system with substitution problem was studied by Lee (1987) whilst the Plant level flexibility problem was studied by Jordan and Graves (1995). The Vanilla box problem was investigated by Swaminathan and Tayur (1998) and the Random yield and substitution problem by Bitran and Dau (1992) and Nahmias and Moinzadeh (1997). The Product pricing, customer preferences and substitution problem has been studied by Agrawal and Smith (2000) and Sen and Zhang (1999). The Hotel yield management problem was investigated by Queyranne and Fill (2000).

3. Problem formulation and analysis

In this section we present our model and assumptions in greater detail and discuss properties of the optimal solution.

3.1. Assumptions and stochastic programming formulation

The sequence of events in our model is as follows; first, the decision maker selects which products to produce and how much. We assume that these products become available before demand is realized. Next, demand is observed, a substitution decision is made and existing inventory of different products is used to satisfy each product’s demand. Any unsatisfied demand is lost. Then, production costs, inventory holding costs, shortage penalty costs and substitution costs are incurred. Finally, all left-over inventory is salvaged at a discounted price. We use the following notation:

Decision variables:

\[
X = (x_1, x_2, \ldots, x_N) \text{ is the initial inventory position at the beginning of the period;}
\]

\[
Y = (y_1, y_2, \ldots, y_N) \text{ is the inventory position after production;}
\]

\[
Z = (z_1, z_2, \ldots, z_N) \text{ where } z_j = 1 \text{ if product } j \text{ is produced, } 0 \text{ otherwise;}
\]

\[
w_{ij} = \text{amount of substitution of product } i \text{ to } j, \text{ where } i \leq j; \]

\[
u^+_j = \text{left-over inventory for product } j \text{ (at end of period);}
\]

\[
u^-_j = \text{shortage for product } j.
\]

Data/problem parameters:

\[
\xi = (\xi_1, \xi_2, \ldots, \xi_N) \text{ is a random vector representing product demand;}
\]

\[
F(\cdot) = \text{cumulative probability distribution function of } \xi;
\]

\[
K = (K_1, K_2, \ldots, K_N) \text{ is the setup cost;}
\]

\[
C = (c_1, c_2, \ldots, c_N) \text{ is the unit variable production cost;}
\]

\[
H = (h_1, h_2, \ldots, h_N) \text{ is the unit overtime cost (= holding cost − salvage value);}
\]

\[
P = (p_1, p_2, \ldots, p_N) \text{ is the unit shortage penalty cost;}
\]

\[
s_{ij} = \text{unit substitution cost of using product } i \text{ to satisfy product } j \text{ demand, for } 1 \leq i \leq j \leq N, \text{ with } s_{ij} = 0 \text{ and } s_{ij} = \infty \text{ for } i > j.
\]

One of the distinguishing features of our model is the presence of a setup cost, K, for producing products. Clearly, setup costs characterize several real environments as discussed in the Introduction. We assume that total substitution costs are linear (i.e., proportional to the amount of substitution from i to j). One could view the per unit substitution costs as: (i) the cost of removing components (or removing features via software switches) from the product before substituting it; or (ii) the lost goodwill or reduced revenue when i is substituted for j. This is consistent with assumptions made in the literature on substitution models. As in Hsu and Bassok (1999), the average cost, H, can be negative when the unit salvage value exceeds the per period holding cost. We assume that demand is unaffected by substitutions, because customers often have little or no knowledge of substitutions by the manufacturer (and may only be happy to get a better product).

As is common in the inventory literature, we assume that $c_j + h_j > 0$, $p_j > 0$, for $j = 1, \ldots, N$. If this assumption is violated, then it is trivially optimal to produce either nothing (when $p_j \leq 0$) or an infinite amount of product j (when $c_j + h_j \leq 0$). In addition, we make the following assumptions on cost parameters:

Assumption 1. Substitution feasibility: (i) $h_i \leq h_j + s_{ij}$; cost to hold product i is no more than cost to convert it to $j > i$ and hold j. (ii) $p_j \leq p_i + s_{ij}$; it is cheaper to incur a shortage of j than to satisfy product j demand by converting i to j and incurring a shortage of i.

Assumption 2. Substitution cost-effectiveness: $s_{ij} \leq h_i + p_j$, for some $i < j$. This assumption ensures that substitution is profitable for at least one pair of products (here i and j), otherwise, the problem reduces to a model without any substitution.

In addition, in our computational testing we restrict attention to cases where the triangle inequality, $0 \leq s_{ik} \leq s_{ij} + s_{jk}$, $1 \leq i \leq j \leq k \leq N$, holds. In practical situations we would expect the cost of a direct substitution from i to k to be less than the cost of two or more substitutions that generate the same result.

Given a vector of initial inventory, X, and a sufficiently large constant, M, we formulate the problem as a two-stage
stochastic program with recourse.

\[
U^*(\mathbf{X}) = \min_{y_i, z_i} \left\{ U(\mathbf{X}, Y, Z) = \sum_{i=1}^{N} c_i(y_i - x_i) + \sum_{j=1}^{N} K_i z_j + \int_{\xi} L(Y, \xi) dF(\xi) \right\},
\]

subject to

\[
0 \leq y_i - x_i \leq M z_i, \quad z_i = 0, 1, \quad \text{for all } i,
\]

where (the recourse problem):

\[
L(Y, \xi) = \min_{w_{ij}, u_{ij}, u_i} \sum_{j=1}^{N} \left(h_i u_i^+ + p_i u_i^- + \sum_{j=i}^{N} s_{ij} w_{ij} \right),
\]

subject to

\[
\sum_{j=1}^{N} w_{ij} + u_{ij} = \xi_j, \quad \text{for } j = 1, \ldots, N, \quad (1)
\]

and

\[
\sum_{k=j}^{N} w_{jk} + u_{jk} = y_j, \quad \text{for } j = 1, \ldots, N; \quad (II)
\]

In the above formulation, \(y_i - x_i\) determines the production quantity for item \(i\) and constraint (2) models the setup cost. In (3), \(L(Y, \xi)\) represents the inventory overage, shortage and substitution cost given inventory position \(Y\) (after production) and demand realization \(\xi\). Constraints (4) control the substitution amounts, \(w_{ij}\), based on demand realization and the inventory level; here \(w_{ij}\) represents the amount of item \(i\) used to satisfy demand for \(j\). Consistent with past research (Ignall and Veinott, 1969; Bassok et al., 1999), at the second stage, we assume that all the demand is known immediately. In reality, this demand may occur in a dynamic fashion (customers coming one at a time, as at a car-rental agency), however, such a dynamic substitution model becomes extremely complex. Note that, it is easy to show that an expected profit maximization formulation (Parlar and Goyal, 1984) of this problem can be converted to an equivalent expected cost minimization.

3.2. The Recourse Problem

The recourse problem, \(L(Y, \xi)\), can be modeled as a network flow problem. The network consists of \(2N + 2\) nodes: Nodes \(j^1\) and \(j^0\) respectively represent the two constraints in (4) corresponding to product \(j\) for \(j = 1, \ldots, N\); nodes + and - represent an inventory sink and a shortage source. There is demand outflow \(\xi_j\) at \(j^1\) and inventory inflow \(y_j\) at node \(j^1\). Ares \(j^1 \to +\) and \(-\to j^1\) correspond respectively to flow of excess inventory and shortage. For \(i, j \leq N\), arc \(i^1 \to j^1\) corresponds to a flow of \(w_{ij}\) units of product \(i\), which represents substitution of \(i\) to satisfy demand for product \(j\). Figure 1 illustrates this network for a four product problem. Due to this network structure, the recourse problem can be solved efficiently. Before elaborating on solution algorithms, we present a few characteristics of this problem.

Proposition 1. If \(s_{ij}\) can be written as \(\alpha_i + \beta_j\), for all pairs \(i, j\) with \(j > i\), then the recourse problem may be reformulated as an equivalent problem with zero substitution costs \((s_{ij} = 0)\) for all \(i, j \geq i\) and average and penalty costs, respectively, equal to \(h_i = h_i - \alpha_i\) and \(p_i = p_i - \beta_i\).

Proof. Substituting \(s_{ij} = \alpha_i + \beta_j\), the objective of the recourse problem becomes:

\[
\sum_{i=1}^{N} \sum_{j=1}^{N} (\alpha_i + \beta_j) w_{ij} + \sum_{i=1}^{N} h_i u_i^+ + \sum_{i=1}^{N} p_i u_i^-
\]

\[
= \sum_{i=1}^{N} \alpha_i \left(\sum_{j=1}^{N} u_{ij} \right) + \sum_{j=1}^{N} \beta_j \left(\sum_{i=1}^{N} u_{ij} \right)
\]

\[
+ \sum_{i=1}^{N} h_i u_i^+ - \sum_{i=1}^{N} p_i u_i^-,
\]

\[
= \sum_{i=1}^{N} \alpha_i (\xi_j + y_j) + \sum_{j=1}^{N} \beta_j (\xi_j - u_j^-)
\]

\[
+ \sum_{i=1}^{N} h_i u_i^+ - \sum_{i=1}^{N} p_i u_i^-,
\]

\[
= \sum_{i=1}^{N} \alpha_i y_i + \sum_{j=1}^{N} \beta_j \xi_j + \sum_{i=1}^{N} (h_i - \alpha_i) u_i^+ + \sum_{i=1}^{N} (p_i - \beta_i) u_i^-,
\]

where the second equality follows from constraints (4).

Since the first two terms in Equation (5) are constants in the recourse problem, substituting the definitions of \(h_i\) and \(p_i\) into Equation (5) yields the required result.

Note that even though the substitution costs may be zero, selection of the set of items to produce will affect \(L(Y, \xi)\).
through the node costs h^*_i and p^*_i. By Proposition 2 below, an efficient "greedy" algorithm solves certain instances of the recourse problem.

Proposition 2. Under the conditions in Proposition 1, the recourse problem is solved to optimality by the following single-pass, greedy algorithm when the cost parameters satisfy $h^*_1 \leq h^*_2 \leq \cdots \leq h^*_n$, and $p^*_1 \geq p^*_2 \geq \cdots \geq p^*_n$.

Proof. See Appendix.

The single-pass greedy algorithm for the recourse problem when $s_{ij} = \alpha_i + \beta_j$ can be stated as:

Greedy algorithm

Step 1. [Satisfy the demand for each product using its own inventory]
- For $i = 1$ to N
 - $u^+_i = \min(\xi_i, y_i)$,
 - $u^-_i = \max(-w_i + y_i, 0)$,
 - $u^+_i = \max(\xi_i - w_i, 0)$,
 - if $(u^+_i > 0)$, $\theta_i = \delta_i = -h^*_i$;
 - if $(u^-_i > 0)$, $\theta_i = \delta_i = p^*_i$,
 - $F = \{\tau_1 = \{1\}, \tau_2 = \{2\}, \ldots, \tau_N = \{N\}\}$, where F is a forest of trees, τ_j.

Step 2. [Determine substitutions]
- For $j = 1$ to N
 - While $(u^-_j > 0)$
 - For $i = j$ to 1 down to 1
 - if $u^+_i = 0$ or $-h^*_i > p^*_j$, go to next i; else
 - if $u^+_i < u^-_j$, $\chi_i = u^+_i$, $\psi_i = 0$, $\tau_i = \tau_j \cup \tau_i$, $F = F \backslash \tau_i$,
 - for all k in τ_i, $\theta_k = \delta_k = p^*_j$.
 - if $u^+_i \geq u^-_j$, $\chi_i = u^+_i$, $\psi_i = 0$, $\tau_i = \tau_j \cup \tau_i$, $F = F \backslash \tau_i$,
 - for all k in τ_i, $\theta_k = \delta_k = -h^*_i$.

Corollary 1. When $s_{ij} = T(j - i)$ or $s_{ij} = T(c_i - c_j)$ where T is a constant, the recourse problem can be solved to optimality using a single-pass greedy algorithm.

Given the above results, a reasonably large class of general substitution problems are equivalent in structure to problem instances with zero substitution costs. Since the unit substitution cost, s_{ij}, includes costs of adding or removing components or features and the lost-goodwill cost, often, $s_{ij} \approx f(c_j) - g(c_i) + c^G$, where $f(\cdot)$ and $g(\cdot)$ are functions and c^G represents loss of goodwill costs. Thus s_{ij} can be of the form $\beta_j + \alpha_i$. The case of general substitution costs may be solved using fast min-cost network flow algorithms or a standard linear programming code such as CPLEX.

The speed of the algorithm for solving the recourse problem is critical because this problem must be solved repeatedly for different demand scenarios, ξ_i, and different inventory positions, Y. This requirement also motivated Bassok et al. (1999) and Hsu and Bassok (1999) to develop greedy heuristics for their problems. Our single-pass greedy algorithm is different from the one in Hsu and Bassok (1999) in that our algorithm requires only a single pass, whereas theirs is a two-pass algorithm. To empirically assess the reduction in run time from using a single-pass approach versus the one in Hsu and Bassok (1999), we implemented both approaches. We generated 2304 problem instances with five products (Section 5), each of which were run for several values of demand scenarios. Based on this test set, we observed that run time of the two-pass algorithm divided by the run time of the single-pass algorithm was on average 1.58.

3.3. Properties of the cost function

The following results will be used by our solution procedures (described in Section 4). Proposition 3 is used in the gradient search for the optimal Y, given Z; Proposition 4 validates the IPA gradient estimate; and Proposition 5 reduces the search space for the optimal set of items to produce.

Proposition 3. $L(Y, \xi)$ is convex and piecewise linear in Y for each ξ.

Proof. The second stage recourse problem is a linear program for each ξ with Y as the right-hand sides of the constraints. Hence, $L(Y, \xi)$ is convex and piecewise linear in Y.

Proposition 4. $G(Y) \equiv CY + E_\xi[L(Y, \xi)] = CY + \int_{z_{\xi}} L(Y, \xi) dF(\xi)$ is convex and continuously differentiable over Y values for which $G(Y)$ is finite.

Proof. See Appendix.

Proposition 5. Let $S = \arg\min_Y G(Y)$, and let $[1, 2, \ldots, N]$ denote the products listed in increasing order of setup costs (i.e., $K[i] \leq K[j]$ for $i < j$). Let $K(i) = \sum_{j=1}^{i} K[j]$. Then, if initial inventory position, X, satisfies $G(X) < G(S) + K(i)$, for some i, the optimal number of products to produce is less than i. In particular, if $K_{\min} = \min_i K[j]$ and $G(X) \leq G(S) + K_{\min}$, it is optimal to produce nothing.

Proof. By contradiction: From Equation (1), $U(Y, X, Z) = G(Y) - CX - \sum_{j=1}^{n} K[j]z_j$. If we produce i or more products, then total costs $\min_Y U(Y, X, Z) \geq G(S) - CX + K(i)$; if we produce nothing, total costs will be $G(X) - CX$. By the condition in the proposition, $G(X) - CX \leq G(S) - CX + K(i) \leq \min_Y U(Y, X, Z)$. Consequently, not producing incurs lower cost than producing i or more products.

4. Solution procedure

In this section, we first present a large scale MILP formulation to find the optimal solution when demand can be represented by discrete scenarios. Subsequently, we present our heuristic solution procedure.
4.1. A large scale MILP formulation

One way of optimally solving an approximate model is to generate (using standard Monte Carlo methods) only \(m \) representative scenarios of demand, \(\xi^\ell, \ell = 1, \ldots, m \), with scenario \(\ell \) having probability \(\pi^\ell \). This leads to the following formulation:

\[
\min_{y_i, z_i, u_{ij}^+, u_{ij}^-} \quad \sum_{i=1}^{N} c_i(y_i - x_i) + \sum_{i=1}^{N} K_i z_i + \sum_{\ell=1}^{m} \pi^\ell \sum_{i=1}^{N} \left(h_i u_i^+ + p_i u_i^- + \sum_{j=1}^{N} s_{ij} w_{ij} \right),
\]

\[0 \leq y_i - x_i \leq M z_i, \quad z_i = 0, 1, \quad \forall i,
\]

\[\sum_{i=1}^{N} w_{ij}^+ + u_{ij}^- = \xi_j, \quad \text{and}
\]

\[\sum_{j=1}^{N} w_{ij}^- + u_{ij}^+ = y_j, \quad \forall j = 1, \ldots, N, \quad \forall \ell.
\]

This formulation consists of a large number of decision variables (directly proportional to the number of demand scenarios considered), as a result its optimization could be time intensive. We conducted a preliminary analysis to test the robustness of the final solution with respect to the number of demand scenarios. Based on our analysis, we decided to use 500 scenarios (demand vectors) in all our computational experiments. In Section 5, we report on optimal costs and run times obtained from solving the above MILP using CPLEX. Since the same 500 demand scenarios were used in the simulation-based optimization to determine production quantities, we are able to compare the MILP optimal to the expected cost estimates from our heuristics described in the following section.

4.2. Heuristic algorithms

Our solution procedure decomposes the problem into three parts: D1 which determines which products to produce; D2 which determines the optimal production quantities for the products given the decisions in D1; and D3 which allocates products to satisfy realized demand by solving the recourse problem (Section 3.2). We solve D3 using our greedy algorithm. For simplicity, we restrict our attention to instances for which D3 is optimally solved by a greedy approach, consequently, all our computational results are restricted to these instances. We do so because the main focus of this paper is on decisions D1 and D2; the recourse problem D3 must be solved repeatedly for different demand scenarios, and hence, we needed a quick solution approach.

4.2.1. Optimal production quantities, given items to produce

In this section we focus on determining the optimal production quantities, given the set of items to produce:

Problem 1. Given initial inventory, \(X = (x_1, \ldots, x_N) \), and a subset \(S \subseteq \{1, \ldots, N\} \), find the optimal produce-up-to level \(Y \geq X \), with \(y_j = x_j \) for \(j \notin S \), to minimize the total expected costs \(G(Y) = CY + E[L(Y, \xi)] \).

By Proposition 4, finding the optimal \(Y \) is a convex minimization problem, which may be solved by gradient-based search (Sherali et al. 1992). \(G(Y) \) and its gradient is accurately and efficiently estimated using IPA (Glasserman, 1991). In fact, the following IPA gradient estimate can be shown to be valid for our problem.

Proposition 6. The IPA estimator for the (right) derivative of \(G(Y) \) w.r.t. \(y_j \) is \(c_j \) plus the average value of the dual price of constraint (II) of Equation (4) corresponding to product \(j \).

Remark 1. When our greedy algorithm is applicable, the dual price used in the IPA estimator in Proposition 6, is equal to \(\theta_j \), which is finite and can be stated as follows:

\[\theta_j = \begin{cases} -h_i' & \text{if node } j \text{ belongs to tree } \tau_i \text{ and } u_i = 0, \\ p_i' & \text{if node } j \text{ belongs to tree } \tau_i \text{ and } u_i > 0. \end{cases}\]

Note: Trees \(\{\tau_i\} \) have been defined by our greedy algorithm.

4.2.2. Items to produce

To determine which products to produce, one could enumerate over combinations of products. Although this procedure guarantees an optimal solution, it can be computationally intensive (as is the MILP approach from Section 4.1). Hence, we develop two heuristics to determine which products to produce. In both heuristics, once we determine which products to produce, we solve problem 1 using IPA to estimate optimal production quantities, given \(Z \).

4.2.3. A heuristic based on the Wagner-Whitin algorithm

We call this new heuristic SWW because it is related to the Stochastic Wagner-Whitin problem (with uncertain demand and shortages permitted). The traditional Wagner-Whitin algorithm solves the single product, multi-period dynamic lot-sizing problem with deterministic demand and no shortages. The deterministic version of our problem is equivalent to dynamic lot sizing with backlogging: The \(N \) products may be viewed as \(N \) time periods; using product \(i \)'s inventory to satisfy product \(j \)'s demand corresponds to holding the product in period \(i \) to satisfy demand in period \(j \). Based on this observation, our algorithm will first determine the set of products to produce by solving a shortest path problem.

The shortest path network for SWW, shown in Fig. 2, consists of \((N + 1)\) nodes representing the \(N \) products and a dummy product. Arc \(i \to j \) corresponds to a (potential) setup of product \(i \) with production of \(i \) used to satisfy
Fig. 2. Shortest path network for the SWW.

demand for products \(i \) through \(j - 1 \). The length of this arc is the minimum expected cost,

\[
\min_{y,z} \left\{ K_i z_i + c_i (y_i - x_i) \right\}
+ E \left\{ \min_{\mu_i, \mu_j} \sum_{l=1}^{j-1} \left(p_i \mu_i + h_i \mu_j + \sum_{k=l}^{j-1} s_{ik} \mu_k \right) \right\},
\]

subject to

\[\sum_{k=1}^{l} \mu_k + \mu_j = \xi_i, \quad (I) \]
\[\sum_{k=1}^{j-1} \mu_k + \mu_j = y_i, \quad \text{for} \ l = i, \ldots, j - 1, \quad (II) \]
\[y_i = x_i \quad \text{for} \ l \neq i, \quad 0 \leq y_i - x_i \leq M z_i. \]

The arcs in the shortest path from node 1 to node \(N + 1 \) define the items to produce. Product \(i \) is produced if, for some \(j \), arc \(i \rightarrow j \) is in the shortest path and the cost of this arc was based on \(z_j = 1 \). Note that, finding the shortest path from 1 to \(N + 1 \) does not necessarily imply that we always produce product 1.

Since finding the shortest path in an acyclic network is easy, the bulk of the computational effort in SWW is in determining the length of each arc in the network. This is done by solving the following problem using an IPA approach similar to that for problem 1.

Problem 2: If the initial inventory position of products \(i, \ldots, j - 1 \) is \((x_i, \ldots, x_{j-1}) \), find the optimal produce-up-to level \(y_i \) for product \(i \) so as to minimize the expected cost incurred by products \(i \) through \(j - 1 \) (assuming no inventory of products \(k < i \) is available).

To compute all the arc lengths, we need to solve \(N(N + 1)/2 \) instances of problem 2. Note that SWW is a heuristic because, while evaluating the length of arc \(i \rightarrow j \), we ignore the fact that, as a recourse action, any excess inventory of upstream products may be used to satisfy the demand for products \(i \) through \(N \) and that any excess inventory of products \(i \) through \(j - 1 \) may be used to satisfy demand for downstream products with labels greater than \(j - 1 \).

4.2.4. A heuristic using mean demand information

This heuristic labelled as DWW is used to determine the set of products to produce by solving a shortest path problem on the network in Fig. 2 with arc lengths determined by assuming that each product's demand is deterministic and equal to its mean value. Computation of these arc lengths needs some care to incorporate issues that do not exist in the traditional Wagner-Whitin algorithm. For instance, while computing the arc cost for \(i \rightarrow j \), there may be a node \(k, i < k < j - 1 \), such that it is never optimal to convert \(i \) to products with a label greater than \(k \). In this case, the production quantity for \(i \) is just the demand for products \(i \) through \(k \) and products with a label greater than \(k \) incur a shortage penalty if their initial inventory is less than the mean demand. Thus, this computation of arc costs for DWW is akin to a Wagner-Whitin problem with perishability (so that beyond period \(k \), it is uneconomical to hold inventory from period \(i \)).

We also considered a critical-fractile-based heuristic (FWW) in which the set of items to produce was determined as in DWW with the demand specified by mean + \(z \times (standard
deviation) \), where \(z \) denotes the critical fractile corresponding to the critical ratio of \((p_i - c_i)/(p_i + h_i) \). We compared the performance of FWW with DWW and SWW on 1728 problem instances with five products. The average errors for the DWW, SWW and FWW heuristics were respectively 1.42, 1.47 and 1.94%. Hence, in our computational experimentation (Section 5), we only present results for the SWW and DWW heuristics.

5. Computational study

In this section, we first compare the performance of the heuristics to the optimal solution procedure both in terms of accuracy and running time. Next, we provide insights on the benefits of allowing product substitution when setup costs are incurred for item production. Finally we explore changes in inventory strategy and product setup under different operational conditions.

5.1. Experimental setup

The tests are conducted on problem instances with \(N = 5, 10, 15, 20 \) and 25 products. For each value of number of products, \(N \), we varied the following parameters.

Unit cost of products, \(c_i \): We chose the three sets of unit costs, with \(c_i = 1.0 + \eta(N - i) \) for \(\eta = 0.1, 0.2 \) and 0.5, with a higher \(\eta \) corresponding to a greater breadth of the product line (in terms of features present).

Setup costs, \(K_i \): We chose four values for the setup costs: 10c_i, 25c_i, 50c_i and 100c_i. These setup cost values were considered representative because the optimal set of items produced varied from only one item (for high \(K_i \)) to all \(N \) items (for low \(K_i \)).
Table 1. Performance of the two heuristics for normal demand (288 instances for each N)

<table>
<thead>
<tr>
<th></th>
<th>Error for N = 5 products</th>
<th></th>
<th>Error for N = 10 products</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average (%)</td>
<td>Std. dev. (%)</td>
<td>Maximum (%)</td>
</tr>
<tr>
<td>SWW</td>
<td>0.55</td>
<td>0.67</td>
<td>3.76</td>
</tr>
<tr>
<td>DW2</td>
<td>0.46</td>
<td>0.53</td>
<td>2.14</td>
</tr>
<tr>
<td>Randomized</td>
<td>19.92</td>
<td>25.40</td>
<td>141.10</td>
</tr>
</tbody>
</table>

Substitution costs, s_{ij}: We set $s_{ij} = T(c_i - c_j)$, for $i < j$. (Experiments with $s_{ij} = T(j-i)$ yielded qualitatively similar results.) We chose three values for T: $T = 0.0$, $T = 0.5$ and $T = 1.0$, corresponding to different substitution cost levels.

Average and penalty costs, h_i and p_i: We chose values for average costs corresponding to -65 and -70% of c_i. (Problem instances with non-negative average costs of 0 and 15%, corresponding to low salvage values, were also tested with similar results.) For each value of h_i, the penalty costs were chosen so that the expected service level or "critical ratio", $(p_i - c_i)/(p_i + h_i)$, took on values of 0.5, 0.7, 0.8, 0.85, 0.9 and 0.95; only 0.8 and 0.85 were used for normal and uniform demand.

Demand: We modeled demand for each product using a finite normal distribution with mean 100, and coefficient of variation, denoted by cv, of 0.1 or 0.3. Experiments were also conducted for correlated-normal, gamma and uniform demand. For the gamma distribution, we considered cvs of 0.1, 0.3, 0.6 and 1.0.

For each value of N, the above set of parameters give rise to 288 problem instances for each of the normal and uniform demand cases and to 1728 problem instances for the gamma demand. For simplicity, all our computational testing (except Section 5.4) was done with a starting inventory of zero for all products. Product demands were generated by sampling 500 values from the demand distribution. The initial step size for the gradient-based search (IPA) was set to one; if the objective function did not improve in 15 consecutive iterations, the step size was reduced by 25%. The search was terminated when the step size (which governs changes in solution value) became less than 0.01 or when the Euclidean norm of the gradient was less than 0.02.

In the following sections we will highlight key insights from our computational study. Note that the insights are specific to the problem parameters used in our study and there may be instances where they may not necessarily apply. However, with that caveat, we do find several interesting insights that were consistent across the set of parameters that we tested.

5.2. Performances of the two heuristics

We define the relative error of a heuristic to be $\varepsilon = (\text{heuristic cost} - \text{optimal cost})/(\text{optimal cost})$. The run time of the heuristics is measured in CPU seconds on a SUN SPARC station 10. Our computational results are summarized in Tables 1–5 and in Figs. 3 and 4. In Table 1, we present the average, std. dev., and maximum relative error of the two heuristics compared to the optimal for the normal demand case. Across all the problem instances (normal, gamma, and uniform distribution for the five product case), the average error for SWW and DW2 was, respectively, 1.20 and 1.23%. Thus, both heuristics perform reasonably well on the tested instances. Table 2 reports the speed of the heuristics. We also ran the heuristic for larger problems with more products, without determining the optimal solution (which was computationally intensive). A comparison between costs of SWW and DW2 for $N = 5, 10, 15, 20$ and 25 is shown in Fig. 3.

5.2.1. Performance in accuracy and speed

From Tables 1 and 2, we see that, for normal demand, both heuristics are effective with an average error of less than 1.1%. Further, the savings in running time are large compared to the MILP solution approach, particularly for the larger problem with 10 products. The optimal solution was not computed for $N \geq 15$, because, in preliminary testing, the MILP could not determine a single feasible solution better than the heuristics even after 7 hours.

We were somewhat surprised that DW2, a simple mean-demand-based selection of the set of items to produce, could perform so well on many test cases. In order to test if the product setup selection significantly affected total expected costs, we compared our heuristics with alternative random product selection procedures which in expectation produced the same number of items as SWW (or DW2). Results in the Randomized row of Table 1 correspond to selecting the items to produce as follows: Let $\gamma = (\text{number of items produced by SWW})/N$. For each product i, let γ_i be a generated uniform random variate between zero and one.

Table 2. Average running time, in CPU seconds, for normal demand (288 instances for each N), NA = not applicable

<table>
<thead>
<tr>
<th></th>
<th>Five products</th>
<th>10 products</th>
<th>15 products</th>
<th>20 products</th>
<th>25 products</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILP</td>
<td>123.97</td>
<td>3351.49</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>SWW</td>
<td>0.28</td>
<td>2.60</td>
<td>8.77</td>
<td>16.42</td>
<td>33.21</td>
</tr>
<tr>
<td>DW2</td>
<td>0.18</td>
<td>1.33</td>
<td>3.12</td>
<td>3.97</td>
<td>12.16</td>
</tr>
</tbody>
</table>
Table 3. Effect of demand correlation on the heuristic performance for normal demand (144 instances for each correlation)

<table>
<thead>
<tr>
<th></th>
<th>Negative correlation</th>
<th>Zero correlation</th>
<th>Positive correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avg. error (%)</td>
<td>Max. error (%)</td>
<td>Avg. error (%)</td>
</tr>
<tr>
<td>SWW</td>
<td>1.91</td>
<td>10.32</td>
<td>1.95</td>
</tr>
<tr>
<td>DWW</td>
<td>0.83</td>
<td>3.44</td>
<td>1.05</td>
</tr>
</tbody>
</table>

and one. Then Randomized produces i if $y_i < \gamma$. As seen in Table 1, this Randomized performs several orders of magnitude worse than DWW and SWW. Therefore, we confirm that both our heuristics effectively solve a non-trivial product setup selection problem. Further, we note that the choice of which products to produce may be made using expected value information as long as the stock levels are chosen taking the distribution of demand into consideration.

5.2.2. Correlated demand

Table 3 presents our results for the five product instances with demand correlation coefficients of -0.2, 0.0 and $+0.2$, with $h_i = 0.0$ or $0.15e_i$. From the table we see that for the test problem instances, the performance of the heuristics is not very sensitive to demand correlation.

5.2.3. Number of products, N

To investigate if the performance of DWW or SWW depended on the number of products, N, we generated 288 problem instances for each value of $N = 15$, 20 and 25 and computed the objective values U^*_DWW and U^*_SWW. Figure 3 plots the average % cost difference, $100 \left(U^*_\text{SWW} - U^*_\text{DWW} \right) / U^*_\text{SWW}$. We note that as the number of products increases, the average performance of SWW improves slightly relative to DWW. While the magnitude of the percentage cost difference varies significantly with problem instance, the increasing trend in Fig. 3 often held true. For instance, for $N = 15$ the percentage cost difference increased with N in 51% of instances, this increased to 66% for $N = 20$. Figure 3 also demonstrates that the performance of the heuristics shows a similar behavior when demand is uniform with the same mean and variance parameters as the normal.

5.2.4. Effect of demand variation

Table 4 shows the performance of the two heuristics under different coefficients of variation of demand (cv). We find that the performance of both heuristics deteriorates at higher cv. This may be explained as follows. In DWW, we only use the mean demand information, as a result, when cv increases the mean information becomes less valuable and the performance deteriorates. In SWW, the error comes from the leftover inventory of upstream products when we compute the length of the arc connecting node i and node j. This arc length is set equal to the optimal cost of producing product i to satisfy the demand for products i through $j - 1$, under the assumption that leftover inventory of upstream products cannot be used to satisfy demand for products

![Fig. 3. Cost comparison of SWW and DWW solutions (288 instances for each N).](image)

Table 4. Effect of demand variation on the heuristic performance, average error, std. dev. for normal demand (144 instances for each variance and N)

<table>
<thead>
<tr>
<th></th>
<th>Low variance ($cv = 0.1$)</th>
<th>High variance ($cv = 0.3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avg. error (%)</td>
<td>Max. error (%)</td>
</tr>
<tr>
<td>SWW</td>
<td>0.23, 0.20</td>
<td>0.88, 0.80</td>
</tr>
<tr>
<td>DWW</td>
<td>0.23, 0.19</td>
<td>0.70, 0.63</td>
</tr>
</tbody>
</table>
on account of this assumption, SWW's are lengths overestimate costs. With increase in demand variance the overestimated costs makes arc lengths more unreliable, as a result, the performance of SWW worsens.

To test the performance of the heuristics for higher \(cv \) values (0.1, 0.3, 0.6, and 1.0), we ran experiments for the five product problem instances using gamma distributed demand and data parameters identical to the zero correlation normal case. This corresponded to a total of 1728 problem instances, from which all our results pertaining to the case of gamma demand are based. We noted that, the heuristics remain effective for the more variable gamma demand with (Avg. Error, Max. Error) respectively (1.42, 13.81\%) and (1.47, 9.50\%) for SWW and DWW. Averaging over the 432 instances for each \(cv = 0.1, 0.3, 0.6 \) and 1.0, the Avg. Error of SWW was 0.7, 1.4, 2.0 and 2.9, the Avg. Error of DWW was 0.4, 1.2, 2.0 and 2.4\%. These errors suggest that for gamma demand, SWW may be more competitive than DWW at a higher \(cv \) (\(\geq 1 \)).

5.2.5. Effect of setup cost, \(K_i \)

From Fig. 4, we note that for instances with five products and normal demand, the relative error for SWW is smaller than the relative error of DWW when the setup cost, \(K_i \), is large (\(K = 50c \) and \(K = 100c \)). As mentioned in the previous paragraphs, the shortest path used in the SWW overestimates inventory and substitution costs. Consequently, the effect of this overestimation (which leads one to produce the wrong set of products) is amplified when the setup costs are low and many products are produced. Hence, SWW's performance deteriorates with decrease in setup cost. Overall, a similar behavior was observed for the case of 10 products and for different demand distributions.

5.2.6. Other effects

As seen in Table 5, the average relative error increases with the critical ratio, \((p_i - c_i)/(p_i + h_i)\), for gamma demand. Similarly, we noted that the relative errors increase as the salvage value decreases (even if the critical ratio remains unchanged). We also observed that the heuristics performances do not change very significantly with changes in substitution costs.

<table>
<thead>
<tr>
<th>Critical ratio</th>
<th>0.5</th>
<th>0.7</th>
<th>0.8</th>
<th>0.85</th>
<th>0.9</th>
<th>0.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average relative error using SWW (%)</td>
<td>0.39</td>
<td>0.94</td>
<td>1.41</td>
<td>1.65</td>
<td>1.91</td>
<td>2.19</td>
</tr>
<tr>
<td>Average relative error using DWW (%)</td>
<td>1.28</td>
<td>1.32</td>
<td>1.51</td>
<td>1.56</td>
<td>1.59</td>
<td>1.58</td>
</tr>
</tbody>
</table>

5.3. Substitution effects

In this section, we study the effects of considering substitution when setup costs are incurred for item production. First, we provide results which illustrate the cost benefits of substitution. Next we discuss the differences in inventory strategy when substitution is allowed. Finally, we investigate the effect of an increase in the variance on the number of products setup and their inventory levels.

5.3.1. Cost benefits of substitution

We compare total costs with substitution to the corresponding optimal costs when: (i) substitution is not allowed (called no substitution allowed); and (ii) when substitution is allowed but is not taken into account when making production decisions (called no substitution considered). The cost of the no substitution allowed case is computed by independently finding the optimal \((s_i, S_i)\) parameters for each of the products, which determine the respective production quantities (produce-up-to \(S_i \), if item \(i \)'s inventory is \(s_i \) or less). Given these production quantities, we evaluate its cost using Monte Carlo simulation. For the case of no substitution considered, we compute the production quantities as above but allow substitution as a recourse action.

The relative difference from the MILP optimal cost is calculated as (cost of no substitution allowed – optimal cost)/(optimal cost); a similar relative difference measure is used for the case with no substitution considered. These performance metrics represent the potential percentage reduction in costs resulting from exploiting the substitution option. From the results in Table 6, we see that considering

<table>
<thead>
<tr>
<th>Optimal versus no substitution allowed</th>
<th>Optimal versus no substitution considered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. saving (%)</td>
<td>Avg. saving (%)</td>
</tr>
<tr>
<td>Max. saving (%)</td>
<td>Max. saving (%)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Five products</td>
<td>12.53</td>
</tr>
<tr>
<td>10 products</td>
<td>15.54</td>
</tr>
</tbody>
</table>

![Fig. 4. Effect of setup cost on the heuristic performance (five products, normal demand, 72 instances for each \(K \)).](image)
the substitution option (in determining which items to setup and their production quantities) can result in substantial savings (up to 46%). Further, when substitution is not considered in selecting the products to produce and their production quantities, allowing substitution during resource (no substitution considered) is, on average, only slightly (1 or 2%) better than not converting at all (no substitution allowed).

Based on experiments with different values of demand \(cv \), setup cost \(K \), and substitution cost \(c_{ij} \), we find that the savings are greater when the substitution cost is small and the demand variance or setup cost is high. This is intuitive because, when the demand variance or setup cost is high, there is greater potential for cost-effective substitution. Table 7 illustrates results for different combinations of substitution and setup costs.

5.3.2. Changes in inventory strategy

Popular intuition suggests that the substitution option provides greater flexibility and should therefore result in lower total inventory levels when compared to the case with no substitution allowed. However, with non-zero setup costs, optimal inventory levels may actually increase when substitution is permitted. This observation was noted in other environments by Gerchak and Mosman (1992) and Henig and Gerchak (1989).

An intuitive explanation for the above phenomenon is that when substitution is not allowed, the presence of setup costs may make it optimal to not produce a product. On the other hand, when substitution is allowed, the benefits from producing a product in larger volumes and converting it into other products may be large, which could lead to a larger total inventory. Although inventory is not reduced the costs still be significantly reduced when substitution is allowed. Further, as expected, under downward substitution, the inventory of the first product does not decrease and the inventory of the last product does not increase as compared to the optimal solution when substitution is not allowed.

5.3.3. Demand variance and number of products setup

As demand variance increases, we observe that, when substitution is allowed, the number of setups almost always remains the same or decreases. For instance, the number of setups was non-increasing in the demand variance over all the 1728 test cases of the 5 product problem instances with gamma demand and \(cv = 0.1, 0.3, 0.6 \) and 1.0. Comparing the number of setups for each \(cv \) with setups for the next highest \(cv \), we noted that, of the 432 instances at each \(cv = 0.1, 0.3 \) and 0.6, the number of setups remained the same in 383, 330, and 320 instances while the number of setups decreased with \(cv \) in 49, 102, and 112 instances. Similar results were obtained for normal and uniform demand; however, the number of setups did increase with \(cv \) in a few cases.

This empirical observation is different from the usual risk pooling because in our case what decreases is not necessarily the total inventory level, but the number of products setup. The substitution option allows a certain form of risk pooling in that a subset of products can be produced to satisfy the demand for the whole set. On the other hand, there is a per unit substitution cost which goes against production of fewer products. When variance in demand is higher, the benefits of risk pooling are likely to be greater as compared to the cost incurred due to substitution and as a result, fewer products are produced.

5.4. Effects of initial inventory

We conducted some preliminary experiments with different initial inventory levels and found that there is a complex relation between initial inventories and optimal production quantities. It seems to be difficult to come up with general results on the effect of initial inventories in our problem environment, other than simple observations such as: if the initial inventory of an item \(i \) is greater than a threshold value, \(s_i \), and the initial stocks of other items are bounded below, then item \(i \) will not be produced. We also noted that certain existing results on inventory problems with substitution do not always apply. For instance, Bassok et al. (1999) have shown that, when no setup cost is incurred for production, the order-up-to level for any item \(i \) is non-increasing in the initial inventory level of item \(j \neq i \). With setup cost, the order-up-to level may increase with initial inventory.

6. Model extensions/variations

In this section we discuss two extensions: partial substitution and two-way substitution.

6.1. Partial substitution

Here we show how the model developed in Section 3.1 can be extended to incorporate the case where the customer fraction that accepts substitutions is known and fixed at a value that may be less than one. We consider two cases of partial substitution that have been observed in practice. In the first case, a deterministic portion \(f_j, 0 \leq f_j \leq 1 \), of

<table>
<thead>
<tr>
<th>Table 7. Average cost saving (in percent) under different setup costs and substitution costs (288 instances with five products)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal versus no substitution allowed</td>
</tr>
<tr>
<td>(T = 0)</td>
</tr>
<tr>
<td>(T = 0.5)</td>
</tr>
<tr>
<td>(T = 1.0)</td>
</tr>
<tr>
<td>(T = 1.0)</td>
</tr>
</tbody>
</table>

| **Optimal versus no substitution considered** |
\(T = 0 \)	\(K = 10 \)	\(K = 25 \)	\(K = 50 \)	\(K = 100 \)
\(T = 0.5 \)	1.50	5.54	14.69	34.48
\(T = 1.0 \)	1.10	3.92	12.56	26.71
\(T = 1.0 \)	0.94	2.10	8.48	22.95
customers demanding product \(i \) will accept a converted product. To model this case, we add the following constraints for all products whose demand cannot be met by its own on-hand inventory (i.e., \(\xi_j \geq y_j \)):

\[
\sum_{i=j}^{N} w_{ij} \leq f_j(\xi_j - y_j).
\] (6)

In the second case, only a portion, \(f_{ij} \), of the customers whose demand cannot be satisfied by product \(j \) will buy a substitute product \(i \), \(i \leq j \). This corresponds to adding the constraints \(w_{ij} \leq f_j(\xi_j - y_j) \). Under both cases, with the additional constraints, the second stage recourse problem becomes a capacitated network flow problem. Hence, fast network algorithms still apply to this extension of our model.

6.2. Two-way substitution

Another model extension involves two-way substitution where product \(j \) may be used: (i) to satisfy demand for product \(k \) > \(j \) (downward substitution); or (ii) to satisfy demand for product \(i \) < \(j \) (upward substitution or customization by adding features). The large scale MILP formulation from Section 4.1 can be easily modified to permit two-way substitution. Further, the SWW and DWW heuristics may also be tailored to the two-way substitution structure as follows: Let the length of arc \(i \) to \(k \) in SWW denote the expected total cost resulting from producing the optimal quantity of item \(j \), \(i \leq j < k \), to satisfy the demand for products \(i \) through \(k - 1 \). Thus, this arc length is the optimal objective value of the following problem (solved using IPA):

\[
\min_{i \leq j < k} \left\{ \sum_{i=j}^{k} \left[K_j y_j + c_j (y_j - x_j) + E \left[\min_{u \leq u} \sum_{m=i}^{k-1} s_{m,u} w_{im} \right] \right] \right\}
\]

subject to the constraints

\[
\sum_{m=1}^{k} w_{im} - \sum_{m=1}^{i} w_{mi} + u_{i}^{+} - u_{i}^{-} = \xi_i - y_j, \text{ for } i \leq l < k, y_j = x_j \text{ for } l \neq j, 0 \leq y_j - x_j \leq M y_i
\]

The optimal choice of \(j \) may be obtained by implicitly enumerating over all \(j \) between \(i \) and \(k - 1 \). The corresponding optimal production level \(y_j \) is found by an IPA gradient-based search. Given \(y_j \), the recourse problem may be solved using CPLEX. The arcs in the shortest path from \(1 \) to \(N + 1 \) in the network would specify the products to setup. The actual production quantity for these items may subsequently be determined using IPA to compute the optimal production level vector (as in SWW).

7. Conclusions

In this paper, we have modeled the single period multi-product inventory system with downward substitution and setup costs as a two-stage, mixed integer, stochastic program with recourse. Fast solution methodologies, that utilize the inherent structure of the problem and combine alternative optimization techniques, are developed. Over a wide range of parameter settings, our solutions are shown to be very effective (98.8%) on average. Through a computational study, we explored the total cost (and inventory) benefits of substitution and the effects of setup or substitution costs and demand variance.

Future work would consider: (i) multi-period problems; (ii) quick algorithms for the second stage recourse problem with general (two-way) substitution and their application within algorithms to select the set of products to produce; and (iii) a study of efficient quasi-Monte-Carlo techniques for generating demand vector scenarios. We feel that developing effective solutions to the multi-period problem with general substitution is likely to be challenging.

Acknowledgements

We thank Yigal Gerchak and two anonymous referees for several comments that helped improve the content and presentation of this paper. Research of the second author was supported in part by the NSF CAREER award number 9984252.

References

of consecutive nodes in the network. In the final solution, each tree as a whole has either excess inventory or excess demand. (By continuity of demand, the probability of exactly zero excess inventory and zero excess demand is negligibly small, so we do not consider this case.) All the nodes \(k\) in tree \(T_i\) have the same dual price, \(\theta_k = \delta_k\). If tree \(T_i\) has excess inventory (demand), the dual price is \(-h'(p'_i)\).

- **Fact 4**: When the algorithm ends, dual feasibility (optimality) is reached.

Facts 1, 2 and 4 taken together prove the optimality of the greedy algorithm (Proposition 2). Fact 3 is used to prove Fact 4. Proof details are available from the authors.

Proof of Proposition 6. We only consider \(Y\) values at which \(G(Y)\) is finite. Clearly, \(G(Y)\) is non-negative and convex (since expectation preserves convexity and \(CY\) is linear). From Theorem 25.2 and Corollary 25.5.1 of Rockafellar (1970), \(G(Y)\) will be continuously differentiable everywhere if the partial derivatives:

\[
\frac{\partial G(Y)}{\partial y_i} = \lim_{\epsilon \to 0} \int_{R^N} \left[c_i + \frac{L(Y + \epsilon e_i, \xi) - L(Y, \xi)}{\epsilon} \right] dF(\xi),
\]

(A4)
exist and are finite, where \(R^N\) denotes the non-negative orthant of \(N\)-space and \(e_i\) denote an \(N\)-vector of zeros except for a one in the \(i\)th component.

Note that:

\[
\left| \frac{L(Y + \epsilon e_i, \xi) - L(Y, \xi)}{\epsilon} \right| \leq h_i,
\]

since the value of \(L(Y + \epsilon e_i, \xi)\) is no more than the cost of using only \(Y\) to satisfy demand (which is \(L(Y, \xi)\) plus the cost of holding the extra \(\epsilon\) units of product \(i\) (which is \(\epsilon h_i\)). Therefore, the integrand of Equation (A4) is bounded above, which implies \(\frac{\partial G(Y)}{\partial y_i}\) is also bounded above. This allows us to bring the limit inside of the integral in Equation (A4).

Since \(L(Y, \xi)\) is convex, then by Theorem 25.3 of Rockafellar (1970), its partials must exist everywhere except at a countable number of points. Since the demand distribution is continuous, these points will have measure zero. Thus Equation (A4) becomes

\[
\frac{\partial G(Y)}{\partial y_i} = c_i + \int_{R^N} \frac{\partial L(Y, \xi)}{\partial y_i} dF(\xi),
\]

where \(S\) is the set of measure zero at which the partials of \(L(\cdot)\) do not exist. Since the partial derivatives exist everywhere outside of this set \(S\), and are bounded from above, \(G(Y)\) is continuously differentiable everywhere.

Appendix: Proof of Propositions 2 and 6

Proof of Proposition 2 (outline). The dual of the recourse problem with zero substitution cost is:

\[
\min_{\theta_i, \delta_j} \sum_{i=1}^{N} -y_i \theta_i + \sum_{j=1}^{N} x_j \delta_j
\]

subject to

\[
\begin{align*}
-\theta_i & \leq h'_i, \quad \text{for all } i, \\
\delta_j & \leq p'_j, \quad \text{for all } j, \\
-\theta_i + \delta_j & \leq 0, \quad \text{for all } i \leq j.
\end{align*}
\]

(A1) \quad (A2) \quad (A3)

The optimality of the greedy algorithm results from the following easily proven facts:

- **Fact 1**: During the algorithm, primal feasibility is maintained.
- **Fact 2**: During the algorithm, complementary slackness is maintained.
- **Fact 3**: When the algorithm ends, the network is divided into a forest, \(F\), of trees. Each tree is composed

Contributed by Supply Chains/Production-Inventory Systems