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Abstract
We examine a multidivisional �rm with headquarters exposed to moral

hazard by division managers under uncertainty. We show the aggregation
and linearity properties of Holmström and Milgrom (1987) hold under
IID ambiguity of Chen and Epstein (2002). Due to uncertainty aversion,
agents�beliefs depend endogenously on their exposure to uncertainty, ei-
ther for their position in the organization (hierarchical exposure) or con-
tracts (contractual exposure). Incentive contracts, by loading primarily
on division cash-�ow, lead division managers to be more conservative than
headquarters, aggravating moral-hazard. By hedging uncertainty, head-
quarters design contracts that reduce disagreement, lower incentive pro-
vision costs, promoting e¤ort. Because hedging uncertainty interacts with
hedging risk, optimal contracts di¤er from those in standard principal-
agent models. Our model helps explain the prevalence of equity-based
incentive contracts and the rarity of relative-performance compensation.
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The provision of incentives in organizations is essential for economic e¢ ciency.

A key question is to determine appropriate performance measures for incentive pay.

Managerial contracts often are a combination of base-pay, based on narrowly de�ned

division-speci�c performance measures (�pay-for-performance�), plus a component

linked to overall �rm pro�tability (i.e. bonuses, equity-based pay, and other �aggre-

gate�performance measures).1 The distinction between equity-based and division-

speci�c pay is particularly important for lower-level managers. The case for equity-

based incentive contracts for top managers is rather strong as they are responsible

for the performance of the overall �rm. Absent inter-dependencies across divisions,

the use of equity-based pay for division managers and rank-and-�le employees is more

puzzling. For lower-level employees, equity-based compensation reduces responsive-

ness of pay to actions, weakening incentives at the cost of increasing their overall risk

exposure. In addition, when cash-�ows are positively correlated across divisions, to

reduce harmful risk bearing incentive contracts should display a relative-performance

component, a feature more rarely observed in practice.

We study the impact of uncertainty (or �ambiguity�) aversion on the design of

incentive contracts in organizations.2 The key feature of our approach is to acknowl-

edge that most corporate decisions are taken without full knowledge of the probability

distributions involved, a situation characterized as uncertainty (Knight, 1921). We

model uncertainty aversion by adopting the Minimum Expected Utility approach of

Gilboa and Schmeidler (1989), within the continuous time framework with stationary

IID uncertainty of Chen and Epstein (2002).

We consider a multi-division �rm with headquarters, HQ (the principal), and

(two) division managers (the agents). Division cash-�ows depend on unobservable

1The use of aggregate performance measures, such as bonuses, has been docu-
mented in the accounting literature (see e.g., Bushman et al., 1995, and more recently
Bouwens and Van Lent, 2007, and Labro and Omartian, 2021). See Murphy (1999,
2013), Frydman and Jenter (2010), Oyer and Schaefer (2011), and Edmans, Gabaix
and Jenter (2017) for extensive surveys.

2The importance of ambiguity, and the aversion to it, in a¤ecting individual de-
cision making has been shown in both experimental and empirical studies (see, for
example, Bossaerts et al., 2010, Hong et al., 2017, Anderson et al., 2009, Ju and Miao,
2012, Jeong et al, 2015; Epstein and Schneider, 2008, and Machina and Siniscalchi,
2014, o¤er comprehensive reviews).
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e¤ort exerted by division managers, and can be (positively or negatively) correlated.

Building on Holmström and Milgrom (1987), division managers exert a continuous

level of e¤ort and consume only at the end of a �nite horizon. To isolate the e¤ect of

uncertainty on incentive pay, we rule out synergies or other inter-dependencies across

divisions (as, for example, in Holmström, 1982).

Traditional principal-agent theory (Holmström, 1979, 1982) suggests that, in this

situation, to limit risk exposure, incentive contracts should depend only on perfor-

mance measures that are informative on actions (the �informativeness principle,�

Holmström, 2017).3 The implication is that contracts should hedge division man-

agers�risk by giving a negative (positive) exposure to variables that are positively

(negatively) correlated to division cash-�ow�s residual risk.

These predictions change substantially in the presence of uncertainty aversion.

We begin by showing that the aggregation and linearity property of Holmström and

Milgrom (1987) hold in our environment with stationary uncertainty. Next, we ar-

gue that uncertainty aversion creates the potential for a divergence between division

managers�and HQ beliefs. Such disagreement is endogenous, and has two adverse

e¤ects. First, traditional incentive contracts, by loading primarily on division cash-

�ows, lead division managers to hold more conservative estimates than HQ on the

productivity of their own division, with a negative impact on incentives to exert e¤ort.

More conservative beliefs are due to division managers�greater exposure to uncer-

tainty on their own division than HQ, who instead have exposure to the overall �rm.

The implication is that HQ must increase pay-for-performance sensitivity to elicit

any desired level of e¤ort. Second, disagreement with HQ leads division managers to

value compensation contracts at a discount with respect to the value attributed by

the (more con�dent) HQ, increasing the cost of incentive provision. We denote this

discount as the (Knightian) �disagreement discount.�

HQ can reduce the negative impact of disagreement by managing individual ex-

posure to uncertainty through contracts, with bene�cial e¤ects on incentives. The

role of contracts in managing beliefs is novel in the theory of contract design. It is

a direct consequence of uncertainty aversion and the property that beliefs, and the

3Responsiveness of CEO pay to risk factors not informative on their actions (�pay-
for-luck�) has beed documented by several studies (see, e.g., Bertrand and Mul-
lainathan, 2001, and, more recently, Choi, Gipper and Shi, 2020).
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extent of disagreement, are determined endogenously and depend on the exposure

of agents to the sources of uncertainty. Di¤erential exposure to uncertainty may be

due to their position in the organization (hierarchical exposure) or to the contractual

relationships that bind agents (contractual exposure). Hierarchical and contractual

exposure concur together to determine the prevailing structure of beliefs in an orga-

nization. We show that, by design of incentive contracts, HQ can a¤ect agents beliefs

with a positive impact on incentives. An implication is that equity-based incentive

contracts can be used to realign internal beliefs, generating consensus by promoting

a �shared view�in the organization.4 The presence of a shared view can reinforce the

bene�cial e¤ect of equity in fostering internal cooperation (Holmström, 1982).

The key economic driver in our paper is that uncertainty-averse agents hold

(weakly) more favorable expectations and, thus, are more con�dent when they are

exposed to multiple sources of uncertainty. This feature is a direct consequence of

the bene�ts of uncertainty hedging that stem from the �uncertainty aversion�axiom

of Gilboa and Schmeidler (1989). By being exposed to multiple sources of uncer-

tainty, agents can lower their exposure to each source of uncertainty and, thus, hold

more �optimistic�beliefs overall. We interpret �beliefs�broadly, as the probability

measure that agents adopt (the �e¤ective beliefs�) to assess random variables and

consequences of actions.

Optimal contracts depend on the level of uncertainty faced by division managers

and HQ. In the simpler case where HQ are uncertainty neutral, optimal contracts de-

pend on the extent of division managers�exposure to uncertainty and on the sign of

the correlation between division cash-�ows. When division managers face low uncer-

tainty, incentive contracts have the same qualitative features as with no uncertainty:

they have a component that depends on the performance of a manager�s own division,

the pay-for-performance part, plus a second component, the risk-hedging component,

that depends on the cash-�ow of the other division. When division cash-�ows are

4The role of equity-based compensation to promote consensus in organizations is
examined in Organization Behavior literature, such as Klein (1987), Pearsall, Chris-
tian, and Ellis (2010), and Blasi, Freeman, and Kruse (2016), among others. The
importance of promoting a shared view is discussed in Zohar and Hofmann (2012).
Advantages and disadvantages of disagreement in organizations has been studied in
several papers: Dessein and Santos (2006); Landier, Sraer, and Thesmar (2009);
Bolton, Brunnermeier, and Veldkamp (2013); and Van den Steen (2005) and (2010).

3



positively correlated, incentive contracts display relative-performance compensation;

when they are negatively correlated, incentive contracts have cross-pay, that is, an

equity component. With respect to the no-uncertainty case, uncertainty increases the

cost of incentive provision, with the e¤ect of decreasing pay-for-performance sensitiv-

ity and cross-division exposure.

When uncertainty faced by division managers is su¢ ciently large, uncertainty

aversion creates the potential for a signi�cant divergence between beliefs held by di-

vision managers and HQ. In this case, HQ �nd it desirable to hedge division managers�

uncertainty by o¤ering compensation contracts with greater cross-division exposure,

at the cost of greater risk. By hedging division managers�exposure to uncertainty, HQ

induce them to hold more favorable expectations on their divisions, with a positive im-

pact on e¤ort. Improvement of division managers beliefs also lowers the disagreement

discount and, thus, the cost of incentive provision. Optimal compensation contracts

will be determined by trading o¤ costs and bene�ts of risk and uncertainty hedg-

ing. Interestingly, optimal contracts have cross-division exposure (with either equity

or relative performance) even in the case of uncorrelated cash-�ows. This property

is in sharp contrast with the informativeness principle in traditional principal-agent

problems with no uncertainty.

When HQ are uncertainty averse as well, their beliefs are also determined endoge-

nously. HQ uncertainty aversion introduces an additional source of disagreement with

division managers making it costlier for HQ to o¤er incentive contracts with relative

performance. This happens because relative performance essentially involves division

managers holding a �short�position in the other division, while HQ hold a �long�

position in both divisions, exacerbating the disagreement discounts. The overall ef-

fect is to make contracts with equity-based pay more desirable. Interestingly, pure

equity-based contracts are optimal when uncertainty is su¢ ciently large, irrespective

of the correlation between divisional cash-�ows.5

Our paper is linked to several streams of literature. The �rst one is the traditional

principal-agent theory and the theory of optimal contract design within organizations.

Contract theory builds on the seminal work by Mirrlees (1975), (1999) and (1976),

5DeMarzo and Kaniel (2017) argue that relative-performance compensation is not
desirable when division managers have �keep-up-with-the-Joneses�preferences.
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Holmström (1979), (1982), Shavell (1979), and Grossman and Hart (1983). One of

the key results of the early stages of this literature is that compensation should be a

function of all and only observable variables that are informative on the action selected

by the agent. Incentive contracts more directly tailored to shareholder value, such as

equity, are shown to be optimal when agents can choose their hidden action from rich

sets of possible action-pro�les (see, for example, Diamond, 1998, and Chassang, 2013).

Oyer (2004) suggests that equity-based compensation (for example, through stock-

option plans) have the advantage of directly adjusting employees�compensation to

their outside options (which may be correlated to �rm value), facilitating satisfaction

of the participation constraints.

The second stream is the emerging literature on contract theory under uncer-

tainty. In the spirit of Innes (1990), Lee and Rajan (2020) study the optimal incentive

contract between a principal and a single agent where both parties are risk-neutral

but uncertainty-averse and the source of uncertainty is the exact probability distri-

bution of the random cash-�ow. The paper shows that, contrary to basic case of

uncertainty-neutrality of Innes (1990), the optimal contract has equity-like compo-

nents. Szydlowski and Yoon (2021) considers a dynamic contracting model where an

uncertainty-averse principal designs an optimal (dynamic) contract for an uncertainty-

neutral agent, and the source of uncertainty is the agent�s cost of e¤ort. Di¤erent from

our paper, uncertainty leads principals to increase pay-for-performance sensitivity (to

preserve incentives under the worst-case scenario). Miao and Rivera (2016) consider

the optimal contract between uncertainty-averse principal and an uncertainty- and

risk-neutral agent, and show that the principal�s preference for robustness can cause

the incentive-compatibility constraint to be lax.6 The main feature of these papers

is to consider principal-agents problems in isolation. In contrast, in our paper we

consider the problem of incentive contracting within organizations, where the prin-

cipal design contracts with multiple agents who are exposed to distinct sources of

uncertainty. In addition, in our paper agents are both risk- and uncertainty averse,

creating a new tension between hedging risk and hedging uncertainty.

Closer to our paper, Kellner (2015) examines a principal-agent model with mul-

tiple agents and moral hazard, where the principal is risk and uncertainty neutral;

6Lee and Rivera (2021) consider optimal liquidity management under ambiguity.
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agents can be risk and uncertainty averse and uncertainty is modeled as smooth

ambiguity (Klibano¤ et al., 2005). Agents are exposed to the same source of un-

certainty about (mutually independent) probabilities measures over outcomes. The

paper shows that, in this case, for su¢ cient large uncertainty aversion, optimal con-

tracts have tournament-like features, an extreme form of relative-performance.

In Carroll (2015) a risk-neutral principal, who is uncertain about the set of actions

available to a risk- and uncertainty-neutral agent, optimally grants the agent a lin-

ear contract that aligns their payo¤s. Linear (or a¢ ne) contracts are optimal robust

contracts under very weak assumptions on the source of uncertainty characterizing

the set of technologies available to the agent.7 In the spirit of Holmström (1982), Dai

and Toikka (2018) examines a moral hazard in teams problem, where a risk-neutral

principal designs contracts that are robust to uncertainty regarding the underlying

game played by uncertainty-neutral agents. The paper shows that optimal robust

contracts must have the property that agents�compensation covaries positively, and

provides conditions under which optimal robust contracts are linear (or a¢ ne). Fi-

nally, Walton and Carroll (2019) show that, under mild conditions, optimal contracts

are linear within several possible con�gurations of the organization structure, when

principal are risk neutral and agents are risk and uncertainty neutral.

Our paper di¤ers from these in several important ways. A common theme of

these papers is to show that linear (or a¢ ne) contracts emerge as optimal robust

contracts in situations where linearity would not otherwise be obtained in absence of

uncertainty. In our paper we take the opposite tack, and we start from a situation

similar to Holmström and Milgrom (1987), where optimal contracts are indeed linear

without uncertainty.8 We �rst show that the linearity property is preserved under

stationary and IID uncertainty. We then characterize optimal linear contracts when

7Carroll and Meng (2016) provides a microfoundation of uncertainty resulting in
linear contracts.

8In an earlier version of this paper, we study a discrete-time version of our model,
and we show that the main results of this paper hold in a discrete-time framework
where contracts are restricted to be linear in division outputs. The connection be-
tween optimal contracts in discrete and continuous time has been investigated by
Hellwig and Schmidt (2002), Biais et al. (2007), and Sadzik and Stacchetti (2015),
among others. By explicitly and directly focusing on continuous-time model, we
ignore this important issue, which we leave for future research.
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principals are risk neutral, agents are risk averse, and they can both be uncertainty

averse. This approach allows us to isolate the speci�c e¤ect of uncertainty aversion on

optimal contract design: when agents are both risk and uncertainty averse, hedging

uncertainty can interact with hedging risk, and the two goals can con�ict with each

other. When uncertainty is su¢ ciently large, the uncertainty-hedging motive can

overcome the risk-hedging motive, reversing important properties of optimal incentive

contracts absent uncertainty concerns.

Finally, our paper is related to recent literature on disagreement and heterogenous

priors.9 We argue that the presence of uncertainty, and the aversion to it, can generate

di¤erences of beliefs among agents, even in cases where agents are ex-ante identical

and share the same set of �core beliefs.�Disagreement in our economy emerges en-

dogenously as the consequence of agents�di¤erential exposure to uncertainty.

The paper is organized as follows. We describe the general contracting problem in

Section 1. We show that, similar to Holmström and Milgrom (1987), the aggregation

and linearity properties of optimal compensation contracts hold under stationary and

IID ambiguity in Section 2. Section 3 examines the impact of incentive contracts

on beliefs and e¤ort under uncertainty. We study optimal incentive contracts o¤ered

by uncertainty-neutral HQ in Section 4, and by uncertainty-averse HQ in Section

5. Finally, we discuss the impact of uncertainty aversion on organizational beliefs

in Section 6. Section 7 concludes with the model�s implications and directions for

further research. With the exception of the proof of Theorem 1, which is included in

the body of the paper, all remaining proofs are the Technical Appendix.

1 Uncertainty and Contracting
1.1 The Basic Model
We consider a �rm composed by two divisions (or business units): d 2 fA;Bg. Each
division is run by a division manager supervised by HQ. At each instant t 2 [0; 1]
each division manager continually chooses a level of e¤ort, ad;t 2 R+, a¤ecting the
probability distribution of divisional cash-�ows. We assume that cash-�ows of both

divisions, Yt � (YA;t; YB;t), follow the (joint) process

dYt = �tdt+ �dWt; (1)

9Boot et al. (2006) and (2008), and Bayar, Chemmanur, and Liu (2011).
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whereWt = (WA;t;WB;t) 2 R2 is a standard bivariate Brownian motion de�ned on the
�ltered probability space

�

;F ; (Ft)t�0 ; P a

�
, with YA;0 = YB;0 = 0. Note (Y;W; P a)

is a weak solution to the stochastic di¤erential equations in (1); all processes are

progressively measurable with respect to the �ltration (Ft)t�0. Following Chen and
Epstein (2002), P a represents the �reference probability,�assumed to be common for

both division managers and HQ.10

Following Holmström and Milgrom (1987), we assume that division manager ef-

forts a¤ect only the drift of its own division with no externalities (or synergies) across

divisions, and we set �t � (�A;t; �B;t)0 with �d;t = ad;tqd, where qd represents the pro-
ductivity of division d under the reference probability, P a. We will refer to division

managers�action pro�le as at = (aA;t; aB;t)
0. Division cash-�ows are homoskedastic,

with constant variance �2, and division cash-�ows may be (positively or negatively)

correlated, with correlation coe¢ cient �. Further, we assume e¤ort does not a¤ect

the variance-covariance matrix, �.11 Thus, � is assumed to be the symmetric square

root of the variance-covariance matrix, � = �0�, giving

� =

"
�2 ��2

��2 �2

#
;� �

"
�
2

�p
1 + �+

p
1� �

�
�
2

�p
1 + ��

p
1� �

�
�
2

�p
1 + ��

p
1� �

�
�
2

�p
1 + �+

p
1� �

� # : (2)

Exerting e¤ort is costly: each division manager su¤ers an instantaneous monetary cost

cd (ad;t) dt, where cd : R+ ! R+ is a continuously di¤erentiable, increasing and convex
function. For analytical tractability, we set cd (ad;t) = 1

2Zd
a2d;t, where Zd characterizes

e¤ort e¢ ciency of division managers. Following Holmström and Milgrom (1987),

division managers and HQ exhibit preferences with constant absolute risk aversion

(CARA), and are paid and consume only at the end of the period, t = 1.12

E¤ort exerted by each division manager is not observable by either HQ or the

other division manager, creating moral hazard. HQ promote e¤ort by o¤ering division

managers incentive contracts, fwdgd2fA;Bg, as follows. We assume that output from
each division, Yd;t, is publicly observable, and we let ht = fYsjs � tg represent the

10Hansen et al. (2006) refer to the measure P a as the �approximating model.�
11Hemmer (2017) and Ball et al. (2020) study contracts when e¤ort a¤ects �.
12By restricting pay and consumption to occur only at the end, we avoid two com-

plications: intertemporal consumption smoothing and private savings. These issues
are examined, for example, in He et al. (2017) who study a dynamic agency problem
in a setting without Knightian uncertainty.

8



entire history of cash-�ows from both divisions at each point in time t. HQ can

condition compensation to each division manager on the entire history, that is wd (h1).

We impose the usual square-integrable condition that EP
a
[wd (h1)]

2 <1.
Given an incentive contract wd(h1) and e¤ort level process ad � fad;tgt2[0;1], divi-

sion manager d 2 fA;Bg earns an end-of-period payo¤

Ud (h1) � u
�
wd (h1)�

Z 1

0

cd (ad;t) dt

�
; (3)

where u (w) = �e�rw, and r represents the coe¢ cient of absolute risk aversion for
both divisional managers. Similarly, HQ earn end-of-period payo¤ equal to

�(h1) � � (YA;1 + YB;1 � wA (h1)� wB (h1)) ; (4)

where � (X) = �e�RX , and R represents the coe¢ cient of absolute risk aversion for
company HQ. Because processes are in L2, they both have �nite expectation.

The di¤erential game unfolds as follows. At the beginning of the period, t = 0,

HQ choose incentive contracts wd (h1) for each division manager d 2 fA;Bg. We
assume that HQ can commit to contracts fwd (h1)gd2fA;Bg, which are observable to
both managers. After incentive contracts are o¤ered and accepted, division managers

continuously and simultaneously choose their level of e¤ort, ad;t, after observing his-

tory ht. At the end of the period, t = 1, division managers are compensated according

to the realized history, h1, and consumption takes place.

1.2 Uncertainty aversion
We model uncertainty aversion by adopting the minimum expected utility (MEU)

approach of Chen and Epstein (2002), a dynamic extension of Gilboa and Schmeidler

(1989). We assume that both HQ and division managers are not sure about (i.e., they

are ambiguous on) the probability measure P a. Following Chen and Epstein (2002),

we consider beliefs distortions that are mutually absolutely continuous measures with

respect to P a, allowing us to use Girsanov�s Theorem.13 De�ne a density gener-

ator to be a R2-valued Ft-predictable process �t satisfying the Novikov condition,
13Miao and Rivera (2016) and Szydlowski and Yoon (2021) use a similar approach.
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EP
a
h
exp

�
1
2

R 1
0
�s � �sds

�i
<1, so that the process

z�t � exp
�
�1
2

Z t

0

�s � �sds�
Z t

0

�sdWs

�
(5)

is a (P a;Ft) martingale. By Girsanov�s Theorem, �t generates an equivalent proba-
bility measure ~P a;� on (
;F) such that

d ~P a;�

dP a
jFt = z�t ; (6)

where z�t is the Radon-Nikodym derivative of ~P
a;� with respect to P a when restricted

to Ft. Note that, from Girsanov�s Theorem, the process

W �
t = Wt +

Z t

0

�sds; (7)

is a standard Brownian motion under the new measure ~P a;�.

Under the measure ~P a;�, divisional cash-�ows Y � follow the process

dY �t = Qatdt+ �
�
dW �

t � �tdt
�
= ��(at)dt+ �dW

�
t ; (8)

where

Q �
"
qA 0

0 qB

#
and ��(at) � Qat � ��t: (9)

Thus, the density generator process �t describes decision makers�(�distorted�) beliefs

on the instantaneous productivity of both divisions.

Following Chen and Epstein (2002), we assume that uncertainty is IID. We allow

for the possibility that HQ and division managers may be exposed to di¤erent degrees

of uncertainty, as follows. For division managers and HQ, we let ��;t 2 K� (at),

� 2 fHQ;A;Bg, for all t 2 [0; 1], where K� 2 R2 is set-continuous (both upper- and
lower-hemicontinous) with K�(at) a convex set for all at. Let

P�� (at) =
n
~P a;�j�t 2 K� (at) ;8t

o
(10)

be the set of admissible priors for division managers and HQ. Note that ~P 2 P�� (at)
if and only if there is a ��;t such that ~P = ~P a;� and ��;t 2 K� (at) for all t. At times,

we will assume that divisions are symmetric, that is, we set

(S) : ZA = ZB � Z; qA = qB � q; and KA (at) = KB (at) � K (at) : (11)
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IID uncertainty can be interpreted as nature drawing independent increments dW a;�
t

of the process W a;�
t from di¤erent urns at each point in time. These assumptions

imply that a division�s past cash-�ow realizations are not informative on future cash-

�ows, thus excluding learning (similar to Chen and Epstein, 2002). Importantly, they

ensure that divisional managers and HQ face stationary uncertainty. Note that the

core of beliefs is rectangular over time, as required for time consistency by Chen and

Epstein (2002). This is because the set of priors does not vary over time. However,

the set K may not be a rectangle. Indeed, similar to Equation (3.12) of Chen and

Epstein (2002), we will consider strictly convex (�round�) sets K. This approach

implies time-invariant uncertainty hedging.

2 Aggregation and Linearity under Uncertainty
At the beginning of the game, t = 0, HQ o¤er division managers a pair of con-

tracts, w (h1) � fwd (h1)gd2fA;Bg, and a set of (history-dependent) instructions a �
fadgd2fA;Bg to maximize expected payo¤, that is to solve

max
fw;ag

min
~P2P�HQ(fad;ad0g)

E
~P� (YA;1 + YB;1 � wA (h1)� wB (h1)) (12)

subject to the constraints that (i) each division managers choose an e¤ort process,

ad, given the other division manager�s action pro�le, to solve

max
~ad

min
~P2P�d (f~ad;ad0g)

E
~P
t u

�
wd (h1)�

Z 1

0

cd (~ad;t) dt

�
; (13)

and (ii) the pairs fad; wd (h1)gd2fA;Bg satisfy their participation constraints

min
~P2P�d (fad;ad0g)

E
~P
0 u

�
wd (h1)�

Z 1

0

cd (ad;t) dt

�
� u0 = 0 (14)

for d; d0 2 fA;Bg; and d 6= d0, where u0 is a division manager�s reservation utility,

which is normalized to zero (without loss of generality). Note that in problem (12)

- (14) a division manager�s uncertainty exposure is endogenous and is determined

by the incentive contract, wd (h1), o¤ered by HQ. Contractual exposure concurs to

determine a division manager�s e¤ective beliefs, ~Pd. Given their higher-level position

in the �rm hierarchy, HQ exposure to uncertainty is determined by their residual

claim in �rm cash-�ow, given incentive contracts o¤ered to both division managers in
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the �rm.14 HQ hierarchical exposure concurs to determine HQ e¤ective beliefs, ~PHQ.

The triplet f ~PHQ; ~PA; ~PBg determines the belief structure prevalent in the �rm.

De�nition 1 An equilibrium is a set of contracts , w(h1) � fwd (h1)gd2fA;Bg, and
action processes faA; aBg, such that:

(i) Given incentive contracts w(h1), for every history ht each division manager

selects e¤ort, ad, optimally, solving (13), given the other division manager�s

action process, ad0 for d0 6= d;

(ii) HQ o¤er contracts w(h1) that maximizes (12) subject to (13) - (14).

The following theorem establishes that the aggregation and linearity property of

Holmström and Milgrom (1987) holds in the case of stationary (IID) uncertainty

with two division managers.

Theorem 1 The optimal contract between HQ and division managers is linear in

cash-�ows, wd (h1) = sd+�dYd;1+
dYd0;1, with constant sd, �d, 
d, for d; d
0 2 fA;Bg;

and d 6= d0. The optimal contract induces constant e¤ort, ad;t = ad, and constant

beliefs, ~P a;�, with constant distortions, �d;t = �d and �HQ;t = �HQ, for all t.

Proof of Theorem 1. Each division manager selects at to maximize

Ud;t � min
~P2P�d (f~ad;ad0g)

E
~P
t u

�
wd (h1)�

Z 1

0

cd (~ad;t) dt

�
:

Given worst-case scenario process, ��d, by the Law of Iterated Expectations, Ud;t is a

martingale adapted to Y �. By the martingale representation theorem, Ud;t is an Itô

Process adapted to Y � with zero drift (Theorem 4.33 of Jacod and Shiryaev, 1987).

De�ne ~wd;t as the certainty equivalent pay, given history: u
�
~wd;t �

R 1
0
cd
�
a�d;t
�
dt
�
=

Ud;t. As a twice-continuously di¤erentiable function of an Itô Process, ~wd;t is an Itô

Process: d ~wd;t = Ad;tdt + B
0
d;tdY

� for predictable processes Ad;t 2 R, Bd;t 2 R2.
Because u = �e�rw, ut = 0, uw = re�rw, and uww = �r2e�rw, so by Itô�s Lemma,

dUd = re
�r ~wd;t

h
Ad;t +B

0

d;t (Qat � ��t)�
r

2
B0d;t�Bd;t

i
dt+ re�r ~wd;tB0d;t�dW

�
t :

14Note that, for simplicity, we assume that HQ are full residual claimants in �rm
cash-�ow. More generally, HQ themselves act in the context of incentive contracts
set-up by a compensation committee, exposing them to contractual exposure as well.
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This is the evolution of expected utility along the equilibrium path, with optimal

e¤ort process a�d;t, and worst-case scenario process �
�
d;t. Because Ud is a martingale,

the drift is zero: Ad;t = r
2
B0d;t�Bd;t �B0d;t (Qa�t � ���t ).

O¤-equilibrium, the agent could deviate from optimal e¤ort a�d;t to ~ad;t from time

t to t + �. This would give them utility Ûd = E~ad;t

h
u
�
wd (h1)�

R 1
0
cd (~ad;t) dt

�i
.

Because u is CARA, we can express this as Ûd = UdCd, where Ud is the equilibrium

utility and Cd = exp
h
r
R t+�
t

cd (~ad;t)� cd
�
a�d;t
�
dt
i
. By the product rule, dÛd =

dUd � Cd + Ud � dCd. Note dCd
Cd
= r

�
cd (~ad;t)� cd

�
a�d;t
��
. Substituting in,

dÛd = re�r ~wd;tCd

h
Ad;t +B

0
d;t (Q~at � ��� (~at))�

r

2
B0d;t�Bd;t � cd (~ad;t) + cd

�
a�d;t
�i
dt

+re�r ~wd;tCdB
0
d;t�dW

�
t :

Note minimizing (maximizing) expected utility is equivalent to minimizing (max-

imizing) the drift of the process expected utility. Because e¤ort and beliefs do not

a¤ect Ad;t or r
2
B0d;t�Bd;t, e¤ort and beliefs solve maxamin��, where

� � B0d;t (Q~a� ��)� cd;t (~at) :

De�ne the monetary payo¤ to the principal as X � YA + YB � wA � wB, so

dX =
�
(1�BA;t �BB;t)0 (Qa� ��)� AA;t � AB;t

�
dt+ (1�BA;t �BB;t)0 �dW �

t :

Note �(t) = min ~P �2P�HQ
Et�(1), so �(t) is an Itô Process. Because HQ utility is

CARA, � = �e�RX , so �t = 0, �x = R e�RX , and �xx = �R2e�RX . Applying Itô�s
Lemma and substituting in for Ad;t,

d� = R e�RXPdt+R e�RX (1�BA;t �BB;� )0 �dW �
t

where

P � (1�BA;t �BB;t)0
�
Qa� � ��HQ�

�
+B0A;t

�
Qa� � ��A�

�
+B0B;t

�
Qa� � ��B�

�
�r
2
B0A;t�BA;t �

r

2
B0B;t�BB;t �

R

2
(1�BA;t �BB;� )0� (1�BA;t �BB;� )

HQ solve maxBmin�2KHQ
P and division managers solve maxamin�2Kd

�. Neither of

these depend on t, w, or X. Therefore, the optimal Bd;t = Bd, ad;t = ad, �d;t = �d,

�HQ;t = �HQ for all t 2 [0; 1]: linear contracts are optimal.
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The process w (ht) is progressively measurable with respect to the �ltration (Ft)t�0
generated by the bivariate Brownian motion Wt. Thus, similar to Holmström and

Milgrom (1987), the martingale representation theorem ensures that it can be repre-

sented as an Itô process, which guarantees instantaneous linearity of incentive con-

tracts. Translation invariance of CARA utility (precluding wealth e¤ects) and IID

uncertainty ensure that HQ and division managers face the same instantaneous opti-

mization problem at every point in the tree, ensuring overall linearity. In the optimal

contract, HQ grant division managers a constant share �d of their own division,

a constant exposure 
d to the other division, inducing constant e¤ort, ad = ad;t,

and constant belief distortions, (�d; �HQ), for all t, for all t 2 [0; 1]. The coe¢ cient
�d determines the pay-for-performance sensitivity of compensation, while the coe¢ -

cient j
dj determines its cross-division exposure. Equity-based compensation can be
achieved by setting 
d > 0, and relative-performance compensation by setting 
d < 0.

Theorem 1 implies that the solution to the dynamic model is equivalent to the

solution of a corresponding static problem where HQ o¤er only a¢ ne contracts that

depend on division cash-�ows. The static problem that corresponds to the dynamic

model can be written in certainty equivalent form, as follows. Letting bA � (�A; 
A)
0,

bB � (
B; �B)
0, � � (�A; �B) = (1� bA � bB)0, where 1 = (1; 1)0, HQ choose a

pair of incentive contracts and action pro�les, fwd; adgd2fA;Bg, that maximize their
(instantaneous) certainty equivalent objective function, solving

max
fw;ag

min
�HQ2KHQ(a)

�� � �0��HQ(a)� R
2
�0��� sA � sB; (15)

subject to the constraint that division managers maximize the certainty equivalent of

their objective function

max
~ad

min
�2Kd(a)

u�d � sd + b0d��d(~ad; ad0)�
r

2
b
0

d�bd � cd (ad) ; (16)

and to the participation constraints

min
�d2Kd(a)

sd + b
0
d�
�d(a)� r

2
b
0

d�bd � cd (ad) � 0 (17)

for d 2 fA;Bg. Note that, absent uncertainty, KHQ (a) = Kd (a) = f0g and problem
(15) - (17) collapses to the corresponding static problem of Holmström and Milgrom

(1987). Further, Theorem 1 shows that the optimal contract implements constant
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e¤ort, at, and constant distortions �t, so is su¢ cient to consider � 2 Kd (a).

The main trade-o¤s faced by HQ in problem (15) - (17) can be decomposed as

follows. Because of translation invariance of CARA, the �xed component of incen-

tive contracts, sd, is set to make the participation constraint (17) bind in optimal

contracts. After substitution into the objective function, we obtain

�� = 10��̂HQ(a)� R
2
�0���

X
d2fA;Bg

fr
2
b
0

d�bd + cd (ad) + b
0
d[�

�̂HQ(a)� ��̂d(a)]g; (18)

where �̂HQ and �̂d are, respectively, the beliefs held by HQ and division manager d,

for d 2 fA;Bg. HQ payo¤ consists of four components. The �rst one is the expected
value of the two divisions, 10��̂HQ(a), which depends on e¤ort exerted by division

managers; the second one is given by the required risk-premia for HQ and division

managers, R
2
�0�� and r

2
b
0
d�bd; the third one is the cost of providing e¤ort by division

managers, cd (ad). These components are common to the traditional problem without

uncertainty aversion.

The last component is due to uncertainty aversion, which a¤ects HQ in three

separate ways. First, HQ valuation of both divisions, ��̂HQ(a), is based on beliefs held

by HQ, �̂HQ, which are endogenous. Second, from the incentive constraint (16), e¤ort

exerted by division managers depends on their worst-case scenario, �̂d, depressing

incentives. This implies that HQ must increase the pay-for-performance sensitivity,

�d, to elicit any desired level of e¤ort, increasing the cost of incentive provision. The

worst-case scenario, �̂d, however, is itself endogenous, and is determined by a division

manager�s overall exposure to uncertainty through incentive contracts. By hedging

uncertainty through contracts, HQ can improve a division manager�s assessment of

her division productivity, ��̂d(a), promoting e¤ort.

The third e¤ect of uncertainty aversion, given by the last term in (18), is to create

a divergence between HQ and division managers on the valuation of compensation

contracts, b0d[�
�̂HQ(a)���̂d(a)]. This terms acts through division managers�participa-

tion constraints (17), and re�ects the fact that HQ value compensation contracts at

their own worst-case scenario, �̂HQ, while division managers value contracts at theirs,

�̂d, creating a disagreement on the assessment of incentive contracts valuations. If HQ

are more con�dent than division managers on division productivity, ��̂HQ(a) > ��̂d(a),

division managers discount the value of their compensation contracts, relative to the
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HQ valuation, making it more costly (from HQ point of view) to satisfy their incentive

and participation constraint, (16) - (17), increasing the cost of incentive provision.

We denote this additional cost of incentive-based pay as a �disagreement discount,�

which represents the �Knightian�cost of disagreement.

In its generality, Theorem 1 precludes derivation of closed-form expressions for

optimal contracts. To derive explicit solutions of optimal contracts, we will introduce

parametric speci�cations of the core-beliefs sets K� (a), for � 2 fHQ;A;Bg, and will
assume that HQ are risk neutral, R = 0. We will consider two possible con�gurations

of HQ beliefs: uncertainty neutrality �rst, and then uncertainty aversion.15

3 Uncertainty and Incentive Contracts
As a benchmark, we start by characterizing the solution to the optimal contracting

problem for our two-division �rm without uncertainty, a setting similar to Holmström

and Milgrom (1987).

3.1 The No-Uncertainty Benchmark
Absent uncertainty concerns, with KHQ (at) = Kd (at) = f0g, HQ and division man-
agers share the same beliefs and agree on the reference probability measure P a.

Theorem 2 (Holmström and Milgrom) Let HQ be risk neutral: optimal contracts

are linear functions of the end-of-period cash-�ows of both divisions: wd (h1) = sd +

�dYd;1 + 
dYd0;1, for all t and d 2 fA;Bg, with

�d =
1

1 + r�2 (1� �2) = (Zdq2d)
; 
d = ���d; (19)

and induce optimal e¤ort

ad = �dZdqd =
Zdqd

1 + r�2 (1� �2) = (Zdq2d)
: (20)

Optimal contract w(h1) is linear in the end-of-period cash-�ow of both divisions,

and depends on the correlation between divisional cash-�ows. When cash-�ows are

15Because uncertainty-neutral HQ hold �rm beliefs on division productivity, we
can denote this case as one of a �visionary leadership.� In contrast, uncertainty-
averse HQ pragmatically adapt (in equilibrium) their beliefs to �rm characteristics,
we can denote this case as one of �pragmatic leadership.�The impact of leadership
styles is examined in Rotemberg and Saloner (1993) and (2000).
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uncorrelated, optimal contracts have no exposure to the other division performance,


d = 0. If cash-�ows are correlated, it is optimal for HQ to hedge division manager

risk exposure by making compensation contingent on performance from both divisions

j
dj > 0. With positive correlation, HQ set 
d < 0 and contracts display �relative-

performance�compensation; with negative correlation, HQ set 
d > 0 and incentive

contracts display an equity component through cross-pay. The bene�t is that hedging

a division manager risk exposure reduces the cost of incentive provision and allows

HQ to increase pay-for-performance sensitivity, improving incentives. Finally, when

division managers are risk-neutral, r = 0, HQ set �d = 1, making them full residual

claimant; in this case, cross-pay 
d is indeterminate because side bets are irrelevant

for risk-neutral agents.

3.2 Incentive contracts and beliefs
Under MEU preferences of Gilboa and Schmeidler (1989) division managers�beliefs

are endogenous and solve the inner problem of (16). The key property that we exploit

is that division managers may become relatively more con�dent about the prospects

of their own division if they have exposure also to the other division�s source of

uncertainty, a feature that is the direct of consequence of uncertainty hedging. This

means that, by proper design of incentive contracts, HQ can a¤ect the probability

measure used by division managers to assess the productivity of their division, and

thus mitigate the adverse e¤ect of uncertainty on e¤ort.

Our results hold when the sets K� (a), � 2 fHQ;A;Bg, are strictly convex with
smooth boundaries, allowing uncertainty hedging to a¤ect beliefs. For tractability,

and to generate closed-form solutions, we assume that both HQ and division managers

consider deviations, P�d , that are in a neighborhood of the reference probability, P a,
as follows. We assume that

K� (a) =

�
�j
�
� ln

�
1� jD�A +N�Bj

aAqA

�
� ln

�
1� jN�A +D�Bj

aBqB

��
� ��

�
(21)

for � 2 fHQ;A;Bg; where, from (2),

D � �

2

�p
1 + �+

p
1� �

�
; N � �

2

�p
1 + ��

p
1� �

�
: (22)

Note that �� re�ects the degree of con�dence in the reference probability P a held by

agent �, for � 2 fHQ;A;Bg, where �� = 0 indicates full con�dence, and increasing
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uncertainty is characterized by greater ��. In the special case of uncorrelated cash-

�ows, (21) simpli�es to

K� (a) =

�
�j
�
� ln

�
1� � j�Aj

aAqA

�
� ln

�
1� � j�Bj

aBqB

��
� ��

�
: (23)

Note these expressions are not history dependent and provide a special case of IID

uncertainty, as in Chen and Epstein (2002).

An important implication of the speci�cation of the core beliefs set based on

(21) and (22) is that decision makers behave as if divisional productivity itself, qd,

is uncertain, as follows. From (16), division managers beliefs are determined by

minimizing their objective function u�d where, from (9), the cash-�ow process Y has

drift �� (a) � Qa� ��. Consider the alternative representation of division managers�
and HQ objective functions

ûd � sd + b
0
dQ̂

da� r
2
b
0

d�
0�bd � cd (ad) ; (24)

�̂ � (1� bA � bB)0 Q̂HQa� sA � sB; (25)

with Q̂� �
"
q̂�A 0

0 q̂�B

#
, where q̂�d0 represents the belief of agent � 2 fA;B;HQg on the

productivity of d0 = fA;Bg and, thus, the drift of the cash-�ow process, � (a) � Q̂�a.

Lemma 1 The following two problems are equivalent:

min
�2Kd(a)

u�d = min
q̂d2Cd

ûd; (26)

where q̂d � (q̂dA; q̂dB) and

C� �

8<:q̂�j ln
0@ 1

1�
��� q̂�AqA � 1���

1A+ ln
0@ 1

1�
��� q̂�BqB � 1���

1A � ��

9=; ; (27)

for � 2 fA;Bg. Similarly, for HQ min�2KHQ(a) �
� is equivalent to minq̂HQ2CHQ �̂:

Lemma 1 implies that the characterization of uncertainty with density generators

in (7) can be interpreted as modeling uncertainty on productivity of both divisions,

as speci�ed in (24). The advantage of focusing on the latter problem is that the

speci�cation for distance of probability measures in (27) allows us to obtain closed

form solutions for optimal contracts. Figure 1 provides a numerical example of the
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core belief set (27).16

We start with the characterization of division managers�belief assessments. Divi-

sion managers�assessment of the productivity of both divisions depend on the pair

of incentive contracts o¤ered by HQ. From (24), given incentive contract w (h1) =

fwd (h1)gd2fA;Bg, division managers beliefs q̂d(a; w) are obtained as

argmin
q̂d

ûd = sd + b
0
dQ̂

da� r
2
b
0

d�bd � cd (ad) ; (28)

s:t: ln

0@ 1

1�
��� q̂AqA � 1���

1A+ ln
0@ 1

1�
��� q̂BqB � 1���

1A � �d:

Note that incentive contracts o¤ered by HQ will have �d > 0, so that division man-

agers will exert strictly positive e¤ort, ad > 0.

Lemma 2 Let �dad > 0 and

Hd �

dad0qd0

�dadqd
: (29)

A division manager�s assessment of the productivity of both divisions, q̂d = fq̂dd; q̂dd0g,
for d; d0 2 fA;Bg; and d 6= d0, is equal to:
i) q̂dd = qd, and q̂

d
d0 = e

��dqd0 for Hd � e�d

ii) q̂dd = (e
��dHd)

1
2 qd and q̂dd0 =

�
e��d 1

Hd

� 1
2
qd0 for Hd 2 (e��d ; e�d)

iii) q̂dd = e
��dqd and q̂dd0 = qd0 for Hd 2 [�e��d ; e��d ]

iv) q̂dd = (e
��d jHdj)

1
2 qd and q̂dd0 =

�
2�

�
e��d 1

jHdj

� 1
2

�
qd0 for Hd 2 (�e�d ;�e��d)

v) q̂dd = qd and q̂
d
d0 = (2� e��d)qd0 for Hd � �e�d

Division managers beliefs toward a division productivity depend on the relative ex-

posure to the cash-�ow from each division, measured by Hd, as a¤ected by incentive

contract wd. Because Hd a¤ects a division manager relative exposure to the uncer-

tainty of the two divisions, we refer to Hd as the �uncertainty hedging�ratio. Note

that sign(Hd) = sign(
d) and that Hd is an increasing function of 
d.

16The core-belief set (27) represents a (tractable) approximation of a corresponding
core-belief set based on Eq. 3.12 in Chen and Epstein (2002), which is displayed,
for illustration, as the dashed line in Figure 1. An important di¤erence from their
speci�cation is that we allow the source-dependent ambiguity aversion to scale in
e¤ort, ad. A similar approximating approach is adopted in Dicks and Fulghieri (2019),
(2021), and Lee and Rivera (2021).
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Several features emerge from Lemma 2. First, when HQ grant pay-for-performance

only, that is 
d = 0 = Hd, or a small exposure to the other division cash-�ow, as in case

(iii), division managers will assess the prospects of their own division conservatively,

with q̂dd = e
��qd. In this case, division managers will be less con�dent on their own

division productivity, disincentivizing e¤ort.

Division manager assessments of productivity of their own division, q̂dd is however

an increasing function of their exposure to the other division, j
dj. Thus, incentive
contracts that o¤er progressively increasing exposure to the other division, as in case

(ii) and (iv), induce division managers to become more con�dent on their own division,

q̂dd. Finally, if incentive contracts o¤er substantial increase of the exposure to other

division, a large value of j
dj, as in case (i) and (v), division managers will become
very con�dent on their own division, setting q̂dd = qd. This bene�cial e¤ect on division

manager beliefs can be obtained by either giving a division manager cross-pay, 
d > 0,

or with relative-performance compensation, 
d < 0.

The impact of j
dj on a division manager�s assessment of the productivity of the
other division depends on the sign of 
d. If the incentive contract includes cross-pay,


d > 0, increasing exposure to the other division progressively worsens the assessment

of that other division productivity, as in cases (ii) and (i). If the incentive contract

includes relative performance, 
d < 0, increasing exposure to the other division (lower


d) progressively improves the assessment of its productivity, as in cases (iv) and (v),

where in both cases q̂dd0 > qd0. The more optimistic assessment re�ects the fact that,

when 
d < 0, better performance in the other division reduces a division manager�s

compensation, which is a concern to the division manager.

3.3 Incentive contracts and e¤ort
We now determine Nash equilibrium of the dynamic e¤ort selection by division man-

agers, given a pair of incentive contracts, w (h1) = fwd (h1)gd2fA;Bg. Given division
managers�beliefs, characterized in Lemma (2), e¤ort is determined by solving

max
~ad

ûd(a; q̂
d(a; w)) = sd + b

0
dQ̂

d(~ad; ad0)
0 � r

2
b
0

d�bd � cd (~ad) ; (30)

for d 2 fA;Bg and d 6= d0. We have the following.

Lemma 3 Given a pair of incentive contracts, fwd = (�d; 
d)gd2fA;Bg, there is a
unique Nash equilibrium e¤ort exerted by division managers, faA; aBg, equal to ad =
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�dZdq̂
d
d, where division manager beliefs, q̂

d
d, are as in Lemma 2. Equilibrium e¤ort

ad is increasing in pay-performance sensitivity, �d, exposure to the other division,

j
dj, e¢ ciency of e¤ort, Zd, and decreasing in uncertainty �d. Further, if jHdj 2
(e��d ; e�d), ad is also increasing in �d0, j
d0j, and Zd0, and decreasing in �d0.

Lemma 2 and 3 together imply that incentive contracts a¤ect division manager e¤ort

through two distinct channels. The �rst one is the traditional e¤ect of inducing e¤ort

by rewarding division managers on the basis of direct performance measures. The

second channel is through the impact of incentive contracts on managerial assessment

of the success probability of their projects. Speci�cally, incentive contracts can be

used by HQ to lead uncertainty-averse division managers to hold more favorable

assessment of the productivity of their own division, with a positive e¤ect on e¤ort.

This is a new channel and the key driver of our paper.

If division managers are uncertainty neutral, their optimal level of e¤ort in (20),

ad, is an increasing function of her own division-based pay, �d, but is not a¤ected

by either their cross-division pay, 
d, nor the action of the other division manager,

ad0. The only e¤ect of cross-division exposure is to hedge a division manager�s risk

exposure, reducing the cost of incentive provision.

Uncertainty aversion introduces a link across division managers�e¤ort levels. From

Lemma 2, exposure to the other division, j
dj > 0, makes e¤ort exerted by a division
manager, ad, an increasing function of e¤ort of the other division manager, ad0. This

is because greater e¤ort from the other manager decreases the relative exposure of a

division manager to uncertainty on her own division, leading to more favorable beliefs

and greater e¤ort. This new source of (positive) externality is due to the (bene�cial)

e¤ect of uncertainty hedging, and is driven solely by beliefs.

4 Uncertainty-Neutral Principal
Consider �rst the case where HQ are uncertainty neutral and hold beliefs q̂HQd = qd

for both divisions, while division managers are uncertainty averse. Given Lemma 1,

problem (12) - (14) becomes

max
fwd;adgd2fA;Bg

�̂ = (1� bA � bB)0Qa� sA � sB (31)
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subject to the constraint that a prescribed action ad solves

max
~ad
min
q̂d

ûd = sd + b
0
dQ̂

d(~ad; ad0)
0 � r

2
b
0

d�bd � cd (~ad) ; (32)

and the participation constraint

min
q̂d

sd + b
0
dQ̂

da� r
2
b
0

d�bd � cd (ad) � 0; (33)

for d 2 fA;Bg and d 6= d0:We consider �rst the easier case in which division managers
are uncertainty averse but risk-neutral.

Theorem 3 If HQ are risk- and uncertainty-neutral and division managers are un-

certainty averse but risk neutral, optimal incentive contracts have

jHdj =
j
djad0qd0
�dadqd

= 1;

which induce division managers beliefs (q̂dd; q̂
d
d0) to be equal to

q̂dd = e�
�d
2 qd < qd; (34)

q̂dd0 = e�
�d
2 qd0 < qd0 for 
 > 0 and q̂dd0 =

�
2� e�

�d
2

�
qd0 > qd0 > q̂

d
d for 
 < 0

for d; d0 2 fA;Bg; and d 6= d0. Optimal contracts set

�d =
1

1 + 3
�
1� q̂dd=qd

� < 1; and j
dj = �d�d; (35)

where �d � adqd
ad0qd0

=
1� 3

�
1� q̂d0d0=qd0

�
1� 3

�
1� q̂dd=qd

� q̂dd=qd
q̂d

0
d0qd0

Zdq
2
d

Zd0q2d0
: (36)

Pay-for-performance sensitivity, �d, and e¤ort, ad, are both decreasing in uncertainty,

�d. If condition (S) holds, equity is optimal, �d = 
d, and q̂
d
d = q̂

d
d0 = e

��
2 q < q:

If division managers are uncertainty averse but risk neutral, hedging their risk is

not a concern for HQ. The presence of uncertainty, by making division managers

less con�dent than HQ on the productivity of their own division, has two adverse

e¤ects. First, it has the detrimental e¤ect on the incentives to exert e¤ort by their

managers. This implies that HQ must increase pay-for-performance sensitivity to

elicit any desired level of e¤ort. Second, more conservative beliefs reduce the value

of the incentive contract, wd, as assessed by division managers, relative to the value

assessed by the more con�dent HQ (the disagreement discount). The combined e¤ect
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is to make it costlier for HQ to induce e¤ort, giving (35). Note that the pay-for-

performance sensitivity, �d, and thus e¤ort, ad, are both decreasing functions of the

extent of the disagreement between a division manager and HQ, given by q̂dd=qd.

The role of cross-division exposure, j
dj , is to improve division managers�beliefs
by hedging their uncertainty. From Lemma 2, an increase of cross-division exposure

(partially) o¤sets the negative e¤ect of uncertainty on beliefs, with bene�cial e¤ect

on e¤ort. Absent risk-aversion considerations, the optimal contract equates a division

manager�s overall exposure to cash-�ow uncertainty from both divisions to be the

same, setting their uncertainty hedge ratio jHdj = 1.
Note that HQ are indi¤erent between granting compensation with cross-pay, 
d >

0, or relative-performance, 
d < 0, as the optimal contracts depends only on the

size of the cross-division exposure, j
dj. This property re�ects the fact that division
managers� beliefs are only a¤ected by the absolute value of their exposure to the

other division, j
dj, and not by its sign. The extent of cross-division exposure, j
dj, is
still proportional to the pay-for-performance sensitivity parameter, with j
dj = �d�d,
where the proportionality factor �d depends on the relative exposure to uncertainty

of the two division managers, a¤ecting the term q̂dd=q, and the relative size of the two

divisions, captured by the term Zdq2d=Zd0q
2
d0. This implies that cross division exposure

is greater for (relatively) less con�dent division managers and for larger divisions.

If divisions are symmetric, the uncertainty hedge ratio can be set to unity with

pure equity contracts: � = 
 < 1. Interestingly, in this case, both division managers

hold the same beliefs on their own as well as the other division, q̂dd = q̂dd0 = e�
�
2 q,

leading to consensus (that is, a �shared view�) in the organization. In addition, HQ

hold (endogenously) more optimistic beliefs than those of division managers for their

own divisions, q̂dd = e
��d

2 q < q, making HQ to appear as �visionary� in the organi-

zation. Finally, absent risk aversion, a contract with extreme relative performance,

with 
 = �� , is also optimal. In this case, from (34), we have q̂dd < q < q̂dd0, and

division managers are more con�dent on the other division that they are on their own,

creating envy and discord in the organization, a potentially undesirable con�guration

of internal beliefs.

An important implication of Theorem 3 is that the optimal contract (35) di¤ers

from the corresponding case of risk-neutral division managers with no uncertainty
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of Theorem 2, where division managers become full residual claimants in their own

division, with �d = 1, and with no role for cross-pay 
d. The reason is that, when

uncertainty is a concern, making division managers full residual claimant exacerbates

pessimism toward their division, depressing e¤ort. In this case, HQ �nd it optimal

to reduce pay-for-performance sensitivity, �d < 1, and to hedge division manager

uncertainty by o¤ering exposure to the other division�s uncertainty, setting j
dj > 0:
The presence of risk-aversion a¤ects optimal contracts because hedging uncer-

tainty creates a risk exposure, which is costly for risk-averse division managers. The

optimal contract in this case depends on the relative importance of the risk-hedging

and the uncertainty-hedging motives. For tractability, with risk-averse division man-

agers we focus on the symmetric case under condition (S).

Theorem 4 Let condition (S) hold. There is a threshold ��(r; �) (de�ned in Appen-

dix), with ��(0; �) = 0, such that for d; d0 2 fA;Bg; and d 6= d0:
1. If � � ��, optimal incentive contracts induce division managers beliefs q̂dd = e

��q

and q̂dd0 = q, by setting

� =
1

1 +
�
1� q̂dd=q

�
+ r�2 (1� �2) =(Zqq̂dd)

> 0; 
 = ���: (37)

Pay-for-performance sensitivity, �, and Nash equilibrium e¤ort, a, are both decreasing

in uncertainty, �; the threshold ��(r; �) is increasing in both r and j�j.
2. If � > ��, optimal incentive contracts induce division managers to hold the same

beliefs as in (34) of Theorem 3 by setting

� =
1

1 + 3
�
1� q̂dd=q

�
+ 2r�2 (1� j�j) =(Zqq̂dd)

> 0; j
j = � (38)

with sign (
) = �sign (�) :When � = 0, HQ are indi¤erent between setting 
 = ��.

When division managers face low levels of uncertainty, � � ��, uncertainty aversion

does not signi�cantly a¤ect beliefs and, thus, their incentives to exert e¤ort. At

these low levels of uncertainty, the disagreement between division managers and HQ

is relatively small, with q̂dd = e
��q < q, corresponding to case (iii) in Lemma 2. The

presence of uncertainty is again to increase the cost of incentive provision, leading

to a decrease of the pay-for-performance sensitivity, �. The optimal cross-division

exposure, j
j ; is still proportional to j�j, and is set to limit a division manager�s
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overall risk exposure, with a corresponding reduction of required risk-premium, as in

the benchmark case. Overall, optimal incentive contracts mirror those in Theorem

2. The main di¤erence is that the presence of uncertainty, by increasing the cost of

incentive provision, reduces both pay-for-performance sensitivity and e¤ort.

When division managers are su¢ ciently exposed to uncertainty on division pro-

ductivity, � > ��, HQ �nd it optimal to hedge uncertainty and o¤er incentive contracts

with greater cross-division exposure, j
j = � > j�j �, at the cost of greater risk ex-
posure. The presence of such uncertainty, if left unchallenged, would signi�cantly

depress e¤ort. By granting greater cross-division exposure, HQ limit pessimism held

by division managers, promoting e¤ort. Optimal contracts grant division managers

a su¢ cient share of the other division to induce them to hold beliefs that are more

closely aligned with those held by HQ, with q̂ = e�
�
2 q > e��q (corresponding to

cases (ii) and (iv) in Lemma 2). To hedge division-manger risk exposure, the sign

of the cross-division exposure, 
, is again the opposite to the sign of the correlation

coe¢ cient, with sign (
) = �sign (�). When the cash-�ows of the two divisions are
uncorrelated, cross division exposure does not produce any risk-hedging bene�t (but

only uncertainty hedging), and HQ are again indi¤erent between setting 
 = �� (as
in Theorem 3).

Interestingly, the optimal cross-division exposure is set to a greater level, j
j = �,
than the one absent uncertainty, j
j = j�j� in Theorem 2. Deviations from optimal

risk hedging, however, are costly and occur only when the bene�ts from uncertainty

hedging are su¢ ciently large, generating a discrete jump in cross-division exposure,

from j
j = j�j � to j
j = � > j�j �. The discontinuity is due to the fact that, with low
uncertainty, � � ��, division managers beliefs are in case (iii). In this situation, small
deviations from optimal risk-sharing have no impact on division managers beliefs,

while negatively a¤ecting their welfare. Deviations from optimal risk hedging are

optimal only when they lead to su¢ ciently large uncertainty-hedging bene�ts, due to

improvements of division managers beliefs, leading HQ to set the uncertainty hedging

ratio again at jHdj = 1.
Optimality of �pure-equity� compensation, j
j = �, in Theorem 4 is the conse-

quence of division symmetry, leading HQ to grant equal exposure to both two divi-

sions. If divisions are not symmetric, and HQ wishes to implement interior beliefs, as
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in case (ii) and (iv) of Lemma 2, optimal contracts still involve cross-division exposure,

j
dj > 0: However, the composition of pay-for-performance sensitivity, �d, and cross-
division exposure, j
dj, will now depend on the relative size the two divisions (which
a¤ects division managers�uncertainty exposure) and their relative risk-exposure.

Corollary 1 Let the optimal contract be such that both division managers have in-

terior beliefs, jHdj 2 (e��d ; e�d), and let adqd > ad0qd0, for d 6= d0. Then the optimal
contract f�d; 
dgd2fA;Bg has

�dadqd + r�
2�2d = j
dj ad0qd0 + r�2
2d; (39)

with j
d0j > �d0�d0 and j
dj < �d�d.

If the two divisions are of di¤ering size, and the optimal contract induces beliefs

that are either in case (ii) or case (iv) of Lemma 2, then the optimal contracts equates

the total (expected) cost to HQ of a division manager�s exposure to the two divisions.

This cost is the sum of two components: for their own division, it is the sum of the

(expected) pay-for-performance component, �dadqd, and of the corresponding risk

premium, r�2�2d, and for the other division is the sum of cross-pay, j
dj ad0qd0, and of
the corresponding risk premium, r�2
2d. In addition, and with respect to the optimal

contract in Theorem 3, the presence of risk aversion has the e¤ect increasing cross-

division exposure for the relatively smaller division, j
d0j > �d0�d0, and to decrease

such exposure for the larger division, j
dj < �d�d.
In summary, an important implication of Theorem 4 and Corollary 1 is that

optimal incentive contracts have positive cross exposure, j
j > 0, even when division
managers are risk averse and division cash-�ows are not correlated, a clear contrast

with the �informativeness principle.� This means that the presence of (su¢ ciently

large) uncertainty leads to incentive contracts that would not otherwise be optimal

under risk aversion alone.

5 Uncertainty-Averse Principal
Di¤erent from the case of uncertainty-neutral principal, beliefs held by uncertainty-

averse HQ are not �xed but, rather, are determined endogenously as well. Since the

properties of Lemma 1 applies also to HQ, their beliefs fq̂HQA ; q̂HQB g are determined

26



by solving

min
fq̂HQA ;q̂HQB g2CHQ

�̂ =
X

d2fA;Bg

�
�dq̂

HQ
d ad � sd

�
; (40)

where �d = 1� �d � 
d0 > 0, for d; d0 2 fA;Bg; d 6= d0, and

CHQ �

8><>:q̂HQj ln
0B@ 1

1�
��� q̂HQAqA � 1

���
1CA+ ln

0B@ 1

1�
��� q̂HQBqB � 1

���
1CA � �HQ

9>=>; : (41)

The following lemma characterizes HQ beliefs for the case in which HQ have positive

residual exposure in either division, �d + 
d0 < 1 (which will be the relevant case in

subsequent analysis).

Lemma 4 Let �d > 0, d 2 fA;Bg with d0 6= d, and

HHQ
d � �d0ad0qd0

�dadqd
; (42)

Headquarters assessment of both divisions, (q̂HQA ; q̂HQB ), is equal to:

i) q̂HQd = qd and q̂
HQ
d0 = e��HQqd0 for HHQ

d > e�HQ

ii) q̂HQd =
h
e��HQHHQ

d

i 1
2
qd, for HHQ

d 2 [e��HQ ; e�HQ ]
iii) q̂HQd = e��HQqd and q̂

HQ
d0 = qd0 for HHQ

d < e��HQ

Similar to Lemma 2, HQ beliefs depend on their relative exposure to the two divi-

sions, as measured by the corresponding uncertainty ratio HHQ
d (note that HHQ

d0 =

1=HHQ
d ). When HQ have moderate exposure to both divisions, as in case (ii) with

HHQ
d 2 [e��HQ ; e�HQ ], they have conservative beliefs toward each division, q̂HQd < qd,

and become less con�dent toward a division when relative exposure to that division

increases. When HQ have a su¢ ciently large exposure to a division, as in cases (i)

and (iii) with HHQ
d > e�HQ or HHQ

d < e��HQ , they will be even less con�dent toward

that division, q̂HQd = e��qd, and correspondingly more con�dent on the other division,

q̂HQd0 = qd0.

Optimal contracts depend on the extent of uncertainty faced by HQ relative to

division managers. We start again with the simpler case where division managers are

uncertainty averse but risk neutral. Beliefs for division managers are still given in

Lemma 2, and e¤ort in Lemma 3. For expositional simplicity, we focus on the case
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in which division managers are exposed to the same uncertainty: �A = �B = �.17

Theorem 5 Let both HQ and division managers be uncertainty averse but risk neu-

tral. If divisions are not too dissimilar, with �d � (Zd0=Zd)
1=2 qd0=qd 2 (e��HQ ; e�HQ)

and the uncertainty faced by HQ is positive but not too large relative to that faced by di-

vision managers, �HQ < ��2 ln 32 , optimal incentive contracts have H
HQ
d = Hd = �d,

and HQ align division managers�beliefs with theirs

q̂dd = q̂d
0

d = e
�
���HQ

2 q̂HQd = e�
�
2 qd�

1
2
d , and (43)

q̂HQd = e�
�HQ
2 qd�

1
2
d ; (44)

for d; d0 2 fA;Bg; and d 6= d0. Optimal incentive contracts o¤er pure equity, with

�d = 
d =
1

1 + 3(1� q̂dd=q̂
HQ
d )

< 1: (45)

When divisions are not too dissimilar and HQ are not too uncertainty averse relative

to division managers (which ensures that HQ has a positive exposure to both divi-

sions, 1 � �d � 
d0 > 0, and that their beliefs fall in case (ii) of Lemma 4), optimal
incentive contracts are pure equity, �d = 
d. Beliefs, pay-for-performance sensitivity

and e¤ort levels mimic those in Theorem 3, with the di¤erence that now HQ beliefs

are endogenous and equal q̂HQd rather than qd. Absent risk-aversion, in optimal con-

tracts HQ equate their uncertainty-hedging ratio with respect to each division to the

uncertainty hedging ratio of its division manager by setting HHQ
d = Hd.

Pay-for-performance sensitivity, �d, cross-pay, 
d, and e¤ort level, ad, now de-

pend on the di¤erence between the uncertainty faced by HQ and division managers,

�HQ � � < 0. In particular, an increase of the uncertainty faced by HQ, for given

uncertainty faced division managers, increases pay-for-performance sensitivity, cross-

pay, and e¤ort. This happens because a smaller di¤erence in uncertainty faced by HQ

and division managers reduces the disagreement discount. A smaller discount lowers

the cost of incentive provisions and induce HQ to o¤er contracts with larger pay-

for-performance sensitivity, leading to greater e¤ort. Greater pay-for-performance

17It is possible, although rather messy, to extend the analysis to the case in which
division managers are exposed to di¤erent levels of uncertainty, �A 6= �B. The optimal
contract in Theorem 5 is still equity, �d = 
d, but division managers receive di¤erent
equity shares: �A 6= �B.
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sensitivity, however, increases a division manager�s exposure to uncertainty, which

is o¤set by a corresponding increase of cross-pay. Beliefs held by HQ and division

managers are aligned in the sense that they both hold the same assessment on the

relative productivity of both divisions, q̂HQd =q̂HQd0 = q̂dd=q̂
d
d0.

Optimal contracts with risk-averse division managers are characterized in the fol-

lowing theorems. For tractability, we focus on the symmetric case, condition (S).

Theorem 6 Let condition (S) hold. There are thresholds (�̂; �̂HQ) (de�ned in the

Appendix) such that for d; d0 2 fA;Bg and d 6= d0:
1. if � � �̂ and �HQ � �̂HQ, optimal incentive contracts induce beliefs for division

managers and HQ equal to q̂dd = e
��q < q̂dd0 = q and q̂

HQ
d = e�

�HQ
2 q < q by setting

� =
1

1 + 2(�� ��)
�

q̂d
d0

q̂HQ
d0
� 1
�
+
�
1� q̂dd

q̂HQd

�
+ r�2(1��2+��2)

Zq̂HQd q̂dd

; 
 = �(�� ��)�; (46)

where �� � q̂dd
�
q̂dd0 � q̂

HQ
d0

�
Z
r�2
= e��q2Z

r�2

�
1� e�

�HQ
2

�
> 0.

2. If � > �̂ or �HQ > �̂
HQ and � � 0 optimal incentive contracts induce beliefs for

division managers and HQ equal to q̂dd = q̂
d
d0 = e

��
2 q and q̂HQd = e�

�HQ
2 q by setting

� = 
 = �̂ � 1

1 + 3
�
1� q̂dd=q̂

HQ
d

�
+ 2r�2(1+�)

Zq̂HQd q̂dd

: (47)

When both HQ and division managers are uncertainty averse, and division managers

are risk averse, optimal incentive contracts depend on the extent of their exposure

to uncertainty and on the correlation between divisional cash-�ows. When overall

exposure to uncertainty is su¢ ciently low, Case 1, optimal contracts mirror again

those absent uncertainty of Theorem 2. The e¤ect of uncertainty is again to reduce

pay-for-performance sensitivity, �.

Interestingly, relative-performance compensation, 
 < 0, is now optimal only if

correlation is su¢ ciently large, � > �� � 0 (note that �� = 0 when �HQ = 0). The reason
is that HQ uncertainty aversion increases the disagreement discount, raising the cost of

hedging division manager risk with relative performance compensation. This happens

because relative-performance compensation for division manager d generates a �short�

exposure to the other division, d0, while HQ still have a �long� position in that

division. From Lemma 4, when HQ are uncertainty averse and hold a long position
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in d0, they are more pessimistic than the reference probability, q̂HQd0 < q. In contrast,

from Lemma 2, division managers are more con�dent on the other division d0 than the

reference probability, q̂dd0 � q. The combined e¤ect is that HQ and division managers
now hold more divergent views on the productivity of that division, increasing the

disagreement discount and, thus, the cost of hedging risk exposure.

The implication is that relative-performance compensation is optimal only when

the risk-hedging bene�ts are su¢ ciently large, that is, when � > ��. The threshold �� is

a decreasing function of a division�s risk, and of division managers�risk aversion, and

is an increasing function of division size (which increases HQ exposure to a division�s

uncertainty, exacerbating the disagreement discount). If division cash-�ows are mod-

erately positively correlated, 0 � � < ��, optimal contracts have an equity component,

 > 0, di¤erent from the benchmark case. Finally, HQ and division managers are

pessimistic on both divisions, and their assessment of division productivity depends

on their relative degree of uncertainty, with q̂dd ? q̂
HQ
d as �HQ

2
? �.

When uncertainty faced by either HQ or division managers is su¢ ciently large,

Case 2, optimal incentive contracts depend on the sign of the correlation coe¢ cient

between division cash-�ows. When division cash-�ows are negatively correlated, � �
0, optimal contracts are pure equity again, with �d = 
d. Furthermore, in this case,

division managers have the same beliefs on the productivity of both divisions, with

q̂dd = q̂dd0 = e�
�
2 q, for d; d0 2 fA;Bg and d 6= d0, and again q̂dd ? q̂HQd as �HQ ? �:

If �HQ = �, HQ and division managers share the same vision in the �rm, reaching

consensus in the organization.

The case of large uncertainty for either HQ or division managers and positive

correlation of division cash-�ow is examined in the following theorems.

Theorem 7 Let condition (S) holds. There is a �̂HQ1 and �̂ 2 (e��; 1) (both de�ned
in the Appendix), with �̂ = 1 when �HQ = 0, such that, if � > �̂, �HQ � �̂HQ1 , and

� > 0, optimal incentive contracts for d; d0 2 fA;Bg, and d 6= d0 induce beliefs equal
to q̂dd = e

��
2 �̂

1
2 q and q̂dd0 > q, and q̂

HQ
d = e�

�HQ
2 q < q, by setting

� =
1

1 +

�
q̂d
d0

q̂HQ
d0
� 1
�
�̂ + 2(1� q̂dd

q̂HQd
) +

2r�2(1���̂)
Zq̂HQd q̂dd

; 
 = ��̂� < 0; (48)

where �̂ is increasing in r; �, �, and decreasing in Z, q, �HQ.
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Optimal incentive contracts with positively correlated cash-�ows depend critically on

the degree of uncertainty a¤ecting HQ. When division cash-�ows are positively cor-

related and HQ are exposed to low levels of uncertainty, �HQ � �̂HQ1 , while division

managers are exposed to large uncertainty, � > �̂, optimal contracts have a relative-

performance component, with 
 < 0. Cross-division exposure is again proportional to

pay-for-performance sensitivity by a factor �̂, which depends on the level of division

managers�risk aversion and their exposure to uncertainty, relative to the uncertainty

faced by HQ. Greater managerial risk aversion and cash-�ow risk increase the im-

portance of hedging division manager�s risk, leading to more cross-division exposure

(bigger �̂). Similarly, greater uncertainty aversion by division managers increases

the importance of uncertainty hedging, leading again to more cross-division expo-

sure. In contrast, greater uncertainty aversion by HQ and exposure to a division

uncertainty (larger values of Z and q), by exacerbating the disagreement discount,

increase the cost of both risk- and uncertainty-hedging. The e¤ect is to reduce op-

timal cross-division exposure, worsening division managers�con�dence in their own

division: q̂dd = e
��
2 �̂

1
2 q (where �̂ < 1).

When uncertainty faced by HQ is su¢ ciently large, it becomes optimal to grant

a division manager positive exposure to the other division, leading to the following.

Theorem 8 Let condition (S) holds. There is a �̂HQ2 (de�ned in the Appendix) such

that, for �HQ > �̂HQ2 optimal incentive contracts for d; d0 2 fA;Bg, and d 6= d0,

induce beliefs for division managers equal to q̂dd = q̂dd0 = e�
�
2 q and for HQ equal to

q̂HQd = e�
�HQ
2 q < q by setting � = 
 = �̂.

When HQ are exposed to su¢ ciently large uncertainty, �HQ > �̂
HQ
2 , optimal incentive

contracts are again pure equity with � = 
, with no relative-performance compensa-

tion even when division cash-�ows are positively correlated. The reason is that large

uncertainty exacerbates disagreement on relative-performance compensation and re-

sults into a more signi�cant cost of hedging division-manager risk. In this situation,

hedging risk can con�ict with hedging uncertainty. With su¢ ciently large uncertainty,

the uncertainty-hedging motive overcomes the risk-hedging motive, and HQ forego

altogether the risk-hedging bene�ts of relative-performance. Rather, they o¤er pure-

equity contracts that better aligns division managers beliefs with theirs, lowering the

cost of incentive provision and promoting e¤ort. This case is an important reversal
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of the predictions of the standard optimal contracting problem with no uncertainty

of Theorem 2.

Finally, note that equity compensation when HQ are uncertainty averse is optimal

even in the case of heterogenous divisions.

Corollary 2 Let the optimal contract be such that HQ granting positive exposure to

both divisions, �d; 
d > 0, and both division managers, as well as HQ have beliefs as

in case (ii) of Lemma (2) and (4), with Hd 2 (e��d ; e�d) and HHQ
d 2 (e��HQ ; e�HQ).

Then the optimal contract f�d; 
dgd2fA;Bg has

�dadq̂
HQ
d + r�2�2d = 
dad0 q̂

HQ
d0 + r�2
2d: (49)

In addition, �dadq̂
HQ
d = �d0ad0 q̂

HQ
d0 , and HQ optimally grants both divisions equity

compensation: �d = 
d.

Similar to Corollary (1), the optimal contract with interior beliefs for both HQ

and division managers equates the total (expected) cost to HQ of a division manager�s

exposure to both division, giving (49). Di¤erent from Corollary 1, however, q̂HQ is

now endogenous. From Lemma 4, when HQ has interior beliefs, HQ equate expected

exposure to each division, �dadq̂
HQ
d = �d0ad0 q̂

HQ
d0 , which implies that �d = 
d. Corol-

lary 2 shows that, when HQ are uncertainty averse, optimality of equity compensation

is the outcome of HQ desire to align division managers beliefs with theirs.

6 Uncertainty and Beliefs in Organizations
We develop a novel theory of belief formation in organizations based on uncertainty

aversion. We argue that the presence of uncertainty, and the aversion to it, can

generate belief heterogeneity even in cases where agents share the same set of �core

beliefs.� Belief heterogeneity emerges endogenously as the consequence of agents�

di¤erential exposure to the sources of uncertainty in the organization.

Individual exposure to uncertainty can be determined �rst by the position occu-

pied by an agent in the organization. Top executives are exposed to all the uncertainty

factors that a¤ect a �rm, either directly, or through the relevant economic environ-

ment surrounding their �rm. In contrast, division managers are disproportionally

exposed to uncertainty factors a¤ecting their own division. Exposure to division
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uncertainty may derive, for example, from the impact of �rm performance on divi-

sion managers�human capital, a¤ecting career opportunities within the �rm or their

outside options. We refer to this exposure to uncertainty as hierarchical exposure,

because it depends on an agent�s position in the hierarchy of the organization.

The second form of exposure depends on the contractual arrangements in the

organization. Division managers make choices in the context of a web of contracts

and rules (organizational protocols) that govern �rms. We refer to this exposure

to uncertainty as contractual exposure, because it depends on all the (implicit or

explicit) contractual arrangements that surround agents.

Hierarchical exposure and contractual exposure together concur to the determina-

tion of the belief structure in an organization. The structure of beliefs that emerges in

equilibrium is endogenous and depends on both its hierarchical con�guration and the

contractual relationships that bind agents together. An implication of our paper is

that internal beliefs can be managed by both organization design and contract design.

In this paper, we focus on the latter. We argue that, by proper design of incentive

contracts, HQ can a¤ect beliefs within the organization and induce a more favorable

belief system, promoting e¢ ciency.

We show that disagreement emerges as an equilibrium outcome that determines

the belief structure in an organization. For example, in our model managers in the

upper levels of the hierarchy can (endogenously) be more con�dent about their �rm�s

future performance than lower-level employees. This implies that rank-and-�le man-

agers perceive members of the top management team of a �rm (such as CEOs and

CFOs) as overcon�dent and unrealistically con�dent.

We also argue that the extent of internal disagreement depends on the level of

uncertainty that characterize di¤erent layers in the organization. When the upper

levels in the hierarchy are relatively less concerned about uncertainty than lower-

levels, uncertainty concerns deeper down in the hierarchy can generate signi�cant

disagreement in the organization. HQ can respond by designing contracts with greater

cross-division exposure, through either a more signi�cant equity-based compensation

(when division cash-�ows are positively correlated) or enhanced relative-performance

provisions (with negatively correlated cash-�ows).

Our model provides a theoretical foundation of the links between compensation
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structure and beliefs systems in organizations.18 The e¤ect of equity-based compen-

sation is to realign internal beliefs, promoting a shared view and internal consensus.

In contrast, relative-performance compensation has two divergent e¤ects on internal

beliefs. First, it improves and realigns a division managers�beliefs on their division

with those of HQ, with bene�cial e¤ect on e¤ort provision. The disadvantage of

relative-performance compensation is that it may lead division managers to be more

con�dent on the other divisions in the �rm, relative to theirs, creating envy and dis-

cord. Such discord may interfere with overall management and performance of the

organization, for example by a¤ecting the internal allocation of resources.

Finally, a large exposure to uncertainty by top levels in the organization increases

the cost of relative-performance compensation. In this situation, HQ may prefer to

forego the risk-hedging bene�ts of relative-performance and, rather, o¤er cheaper

equity-based contracts. Such equity-based contracts provide uncertainty-hedging and

promote e¤ort, with the additional bene�t of fostering consensus.

7 Conclusions and Future Research
We examine the impact of uncertainty aversion on the design of optimal incentive

contracts in an organization. We studied the problem faced by a multidivisional �rm,

for simplicity with two divisions, where agents may be uncertainty averse. Divisional

managers exert unobservable e¤ort that a¤ects the productivity of their division,

creating moral hazard. The contracting problem is complicated by the fact that

division managers are uncertainty averse, making them unduly conservative in the

eyes of their HQ. Such disagreement is endogenous, and is the outcome of the risk-

exposure created in the incentive contracts to promote e¤ort.

We showed that the structure of optimal incentive depends on the level of un-

certainty that a¤ects �rms. For �rms with low uncertainty, incentive contracts still

exhibit pay-for-performance compensation when division cash-�ows are negatively

correlated, and relative-performance compensation when division cash-�ows are pos-

itively correlated, but less than the no-uncertainty case. For �rms characterized by

high levels of uncertainty, optimal incentive contracts are more likely to have cross-pay

compensation or straight-equity.

18Links between pay and sentiment is shown in several papers, such as Bergman
and Jenter (2007), Heaton (2002), and Oyer and Schaefer (2005), among others.
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Our paper can explain how young �rms surrounded by greater uncertainty o¤er

equity compensation to their employees, with little scope for relative-performance

measures. As they mature, resolving much of the earlier uncertainty, �rms then

switch to compensation with more pronounced relative-performance features. Our

paper can also explain the common use of aggregate measures of performance, such

as bonuses geared to the overall performance of an organization. Such reward schemes

play a role similar to the equity-based compensation we examine in our paper.

The analysis in our paper can be extended in several ways. First, it would be

interesting to examine moral multi-tasking situations, as discussed in Holmström and

Milgrom (1991). Our paper suggests an important aspect of uncertainty hedging

and its impact on task assignment and optimal compensation. An additional avenue

of research is to determine the impact of uncertainty on organization design. For

example, it is plausible to expect that organizations in highly uncertain environments

have a relatively �at structure, to promote uncertainty hedging. Our paper is also

essentially a partial equilibrium model. An interesting question is to examine the

impact of labor market forces in a process where heterogenous agents are matched

with heterogenous �rms. We leave these important questions for future research.
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Case i

Case ii i

Case i i

Case v

Case iv

Figure 1: Core of Beliefs

The �gure displays the core-belief set, Equation (27), and the 5 cases of Lemma

1 for d = A under parameter values qA = qB = 100 and �A = ln (5). In Case

(i), HA > e�A, and the division manager holds the reference beliefs toward her own

division, q̂A = qA, and extreme pessimism toward the other division, q̂B << qB.

In Case (ii), HA 2 (e��A ; e�A), leads to moderate pessimism toward both divisions,

q̂d < qd, d 2 fA;Bg: In Case (iii), HA 2 (�e��A ; e�A), leads to extreme pessimism
toward her own division, q̂A << qA, and to reference beliefs toward the other division,

q̂B = qB. In Case (iv), HA 2 (�e�A ;�e��A), leads to moderate pessimism toward

her division, q̂A < qA, and to optimism toward the other division, q̂B > qB. In Case

(v), HA < �e�A, leads again to hold the reference beliefs toward her own division,
q̂A = qA, and to be very con�dent toward the other division, q̂B >> qB. The dotted

line represents the core of beliefs from Equation (3.12) of Chen and Epstein (2002),

with (q̂A � qA)2 + (q̂B � qB)2 � kA.
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Technical Appendix for
�Uncertainty, Contracting, and Beliefs in Organizations�

by David L. Dicks and Paolo Fulghieri

Proof of Theorem 2. Linearity follows from Theorem 1, by setting KA = KB =

KHQ = f0g; thus compensation contract to division manager d is wd = sd + �dYd;1 +

dYd0;1. Substituting for �

� and � in (13), division manager d selects ad to solve

max
ad

ud = sd + �dqdad + 
dqd0ad0 �
r�2

2

�
�2d + 2��d
d + 


2
d

�
� cd (ad) :

Because ud is strictly concave, the incentive constraint is fully characterized by the

�rst-order condition and the unique maximizer is ad = �dZdqd. Because of translation

invariance of ud, (14) always binds at an optimum, giving

sd =
r�2

2

�
�2d + 2��d
d + 


2
d

�
+ cd (ad)� �dqdad � 
dqd0ad0 :

Substituting for sd into HQ objective, (12), we obtain

�̂ =
X

d2fA;Bg

�
qdad �

r�2

2

�
�2d + 2��d
d + 


2
d

�
� cd (ad)

�
;

Substituting for ad = �dZdqd in �̂ and di¤erentiating we obtain that

�d =
1

1 + r�2 (1� �2) = (Zdq2d)
; and 
d = ���d:

Second order conditions are satis�ed by concavity of (12).

Proof of Lemma 1. Consider deviations � 2 K� (a), where K� (a) is de�ned in

(21). By Girsanov�s Theorem, deviation � sets drift � = Qa� ��, where � is de�ned
in (2) and D, N are de�ned in (22). Thus, �A = qAaA �D�A �N�B = q̂AaA where
qA� q̂A = 1

aA
(D�A +N�B). Similarly, �B = q̂BaB, where qB� q̂B = 1

aB
(N�A +D�B).

Thus, jD�A +N�Bj = aA jq̂A � qAj and jN�A +D�Bj = aB jq̂B � qBj. Substituting in
(21), we obtain that � 2 K� (a) if and only if q̂� 2 C�, giving (27).

Proof of Lemma 2. Division managers determine
�
q̂dd; q̂

d
d0

�
in (28). We will focus

on two cases: we start with the case where 
d � 0, and then we consider the case


d < 0. Consider ~qdd = qd + �, for � > 0. Switching to ~qd�d = qd � � lowers ûd by
2�dad� while leaving the constraint unchanged. Therefore, it must be that q̂

d
d � qd.

1



Similarly, switching from ~qdd0 = qd0 + �, for � > 0 to ~q
d�
d0 = qd0 � � lowers ûd by 2
dad0�,

leaving the constraint unchanged. Therefore, it must also be that q̂dd0 � qd0. Thus, we
can express the Lagrangian as

L � �ûd � � [gc � �d]� � d
�
q̂dd � qd

�
� � d0

�
q̂dd0 � qd0

�
where gc � ln qd

q̂dd
+ ln

qd0
q̂d
d0
. Because problem (28) admits corner solutions, we charac-

terize its solution by use of the full Kuhn-Tucker conditions:

@L
@q̂dd

= �@ûd
@q̂dd

� �@gc
@q̂dd

� � d = ��dad +
�

q̂dd
� � d = 0;

@L
@q̂dd0

= �@ûd
@q̂dd0

� � @gc
@q̂dd0

� � d0 = �
dad0 +
�

q̂dd0
� � d0 = 0;

� (gc � �d) + � d
�
q̂dd � qd

�
+ � d0

�
q̂dd0 � qd0

�
= 0;

� � 0; � d0 � 0; � d � 0; �d � gc � 0; qd � q̂dd � 0; qd0 � q̂dd0 � 0:

Note �rst that, from the de�nition of gc; to satisfy the constraint �d� gc � 0 it must
be q̂dd > 0 and q̂d0 > 0, which implies that

@L
@q̂dd

= @L
@q̂d
d0
= 0. Note also that �dad > 0

implies that � > 0; and thus that gc � �d = 0. In addition, it cannot be that both
� d > 0 and � d0 > 0 because, if so, then q̂dd = qd and q̂

d
d0 = qd0, which would imply that

gc = 0 < �d, which contradicts � > 0. This leaves us with three types of solutions:

� d = � d0 = 0, � d > 0 = � d0, and � d = 0 < � d0.

If � d = � d0 = 0, then @L
@q̂dd

= @L
@q̂d
d0
= 0 together imply that � = �dadq̂

d
d and

� = 
dad0 q̂
d
d0, giving �dadq̂

d
d = 
dad0 q̂

d
d0. Because gc = �d implies that q̂dd q̂

d
d0 =

e��dqdqd0, after substitution this implies that
�dad

dad0

�
q̂dd
�2
= e��dqdqd0, or equivalently,

q̂dd = [e��dHd]
1
2 qd, where Hd =


dad0qd0
�dadqd

. Similarly, q̂dd0 =
h
e��d 1

Hd

i 1
2
qd0. In order for

this to be feasible, however, it must be that q̂dd � qd, or equivalently, Hd � e�d , and
q̂dd0 � qd0, or equivalently, Hd � e��d , giving case (ii). If � d > 0 = � d0, then q̂dd = qd
and, from gc = �d, also q̂dd0 = e

��dqd0. Note that @L
@q̂d
d0
= 0 implies that � = 
dad0e

��dqd0

and, from @L
@q̂dd
= 0, we have that

� d = ��dad +

dad0e

��dqd0

qd
= �dad

�
Hde

��d � 1
�
> 0;

which requires Hd > e�d , giving case (i). Finally, if � d = 0 < � d0, then q̂dd0 = qd0 and,

from gc = �d, also q̂dd = e
��dqd. Note that now @L

@q̂dd
= 0 implies that � = �dade

��dqd,

2



and, from @L
@q̂d
d0
= 0, we have that

� d0 = �
dad0 +
�dade

��dqd
qd0

= 
dad0
�
H�1
d e

��d � 1
�
� 0;

which requires 0 � Hd < e��d , giving part of case (iii).
The case with 
d < 0 proceeds in a similar way, giving cases (iv), (v) and the

remainder of case (iii), and is omitted. Note that in the case of interior beliefs, case

(iv), for Hd 2 (�e�d ;�e��d) we have

q̂dd =
�
e��d jHdj

� 1
2 qd; and q̂dd0 =

�
2�

�
e��d jHdj�1

� 1
2

�
qd0 :

Finally, in case (v) we have q̂dd0 = qd0 and q̂
d
d0 = (2� e��d)qd0 for Hd � �e�d .

Proof of Lemma 3. The lemma is shown in two steps. First, we obtain divi-

sion managers�best response functions, ad = Zd�dq̂
d
d, as function of their beliefs, as

in Lemma 2. Second, because q̂dd is positive, continuous, and increasing in ad0, we

characterize the Nash equilibrium in terms of log (ad) and we apply the contraction

mapping theorem, proving uniqueness.

Division manager d 2 fA;Bg chooses e¤ort level ad to solve (30) by setting

d

dad
ûd(a; q̂

d
d(a; w)) =

@ûd
@ad

+
@ûd
@q̂dd

@q̂dd
@ad

+
@ûd
@q̂dd0

@q̂dd0

@ad
=
@ûd
@ad

= 0;

where the second equality holds by the envelope theorem, as follows. For cases (ii)

and (iv) of Lemma 2, we have that @ûd
@q̂dd

= � @g
@q̂d

and @ûd
@q̂d
d0
= � @g

@q̂d0
, giving

@ûd
@q̂dd

@q̂dd
@ad

+
@ûd
@q̂dd0

@q̂dd0

@ad
= �

�
@g

@q̂d

@q̂dd
@ad

+
@g

@q̂d0

@q̂dd0

@ad

�
= �

dg

dad
= 0

because g = e��d . In cases (i)-(iii)-(v), q̂dd and q̂
d
d0 do not depend on ad, and

@q̂dd
@ad

=
@q̂d
d0

@ad
= 0, giving dûd

dad
= @ûd

@ad
= �dq̂

d
d � ad

Zd
= 0.

Thus, the best response functions are ad = Zd�dq̂
d
d, where beliefs q̂

d
d are from

Lemma 2. If 
d = 0, we have that Hd = 0, giving ad = Zd�de
��dqd. If 
d 6= 0,

the best response depends on the e¤ort by the other division manager, ad0. If the

other division manager, d0 6= d, exerts low e¤ort ad0 < aLd0 �
Zd�

2
de
�2�dq2d

j
djqd0
, we have that

jHdj < e��d and division manager d holds pessimistic belief as in case (iii) of Lemma
2, q̂dd = e

��dqd, giving ad = a1�d � Zd�de��dqd. If division manager d0 exerts moderate
level of e¤ort, aLd0 � ad0 < aHd0 �

Zd�
2
de
�dq2d

j
djqd0
, division manager d hold beliefs as in case

3



(ii) of Lemma 2, if 
d > 0, and as in case (iv), if 
d < 0; thus jHdj 2 [e��d ; e�d ] and
ad = [Z2d j
dj ad0�de��dqd0qd]

1
3 . Finally, if division manager d0 exerts a high level of

e¤ort, ad0 > aHd0 , division manager d hold beliefs as in case (i) of Lemma 2, if 
d > 0,

and as in case (v), if 
d < 0; thus jHdj > e�d and ad = Zd�dqd. The best response

function for DM d is therefore given by

a�d (ad0) =

8>><>>:
a1�d � Zd�de��dqd

~a�d (ad0) � [Z2d j
dj ad0�de��dqd0qd]
1
3

a2�d � Zd�dqd

ad0 < a
L
d0

aLd0 � ad0 � aHd0
ad0 > a

H
d0

:

A Nash equilibrium is a pair faA; aBg such that ad = a�d (ad0), d 2 fA;Bg, d 6= d0.

Note that a�d (ad0) is a positive, continuous, and increasing function of ad0. Expressing

the best response in logs, we obtain

ln a�d (ln ad0) =

8>><>>:
lnZd�de

��dqd

ln [Z2d j
dj �de��dqd0qd]
1
3 + 1

3
ln (ad0)

lnZd�dqd

ln ad0 < ln a
L
d0

ln aLd0 � ln ad0 � ln aHd0
ln ad0 > ln a

H
d0

:

Further, note d ln a�d
d ln ad0

= 0 for ad0 < aLd0 and ad0 > a
H
d0 , while

d ln a�d
d ln ad0

= 1
3
for aLd0 < ad0 < a

H
d0 .

De�ne F : R2 ! R2 so that F � (ln a�A (ln aB) ; ln a�B (ln aA))
0, and let d (x; y) be the

Euclidean distance. For x; y 2 R2, de�ne ~xd � max
�
ln aLd ;min

�
xd; ln a

H
d

		
and

~yd � max
�
ln aLd ;min

�
yd; ln a

H
d

		
, we have

d (F (x) ; F (y)) =

q
(ln a�A (xB)� ln a�A (yB))

2 + (ln a�B (xA)� ln a�B (yA))
2

=

q
(ln a�A (~xB)� ln a�A (~yB))

2 + (ln a�B (~xA)� ln a�B (~yA))
2

=

s�
1

3
(~xB � ~yB)

�2
+

�
1

3
(~xA � ~yA)

�2
=
1

3
d (~x; ~y) � 1

3
d (x; y) ;

which implies that 0 � d (F (x) ; F (y)) � 1
3
d (x; y) for all x; y 2 R2. Thus, F is a

contraction mapping and the Nash Equilibrium exists and is unique.

Because the best-response function is constant if d0 exerts low e¤ort, ad0 < aLd0, and

if d0 exerts high e¤ort, ad0 > aHd0 , the Nash Equilibrium is fully determined. All that

remains to be determined is the Nash Equilibrium e¤ort for d when aLd0 � ad0 � aHd0 .
There are three possible cases:

4



(1) If ad0 = a1�d0 > a
L
d0, so that jHd0j � e��d0 , then

ad = ~a
�
d

�
a1�d0
�
=
�
Z2dZd0e

�(�d+�d0 ) j
dj �d0�dq2d0qd
� 1
3 ;

(2) If ad0 = a2�d0 < a
H
d0 , so that jHd0j � e�d0 , then

ad = ~a
�
d

�
a2�d0
�
=
�
Z2dZd0e

��d j
dj �d0�dq2d0qd
� 1
3 ;

(3) if a1�d0 < ad0 < a
2�
d0 , so that jHd0j 2 (e��d0 ; e�d0 ), then setting ad = ~a�d (ad0) and

ad0 = ~a
�
d0 (ad), after solving we obtain

ad = �ad �
�
e��dZ2d�d j
dj

� 3
8
�
e��d0Z2d0�d0 j
d0j

� 1
8 [qdqd0 ]

1
2 : (A1)

Comparative statics follow by direct di¤erentiation.

Proof of Theorem 3. Because (33) binds and r = 0, HQ payo¤ �̂ is now equal to

�̂ =
X

d;d02fA;Bg;
d0 6=d

�
qdad � �dad

�
qd � q̂dd

�
� 
dad0

�
qd0 � q̂dd0

�
� a2d
2Zd

�
;

where ad are the Nash-equilibrium e¤ort levels of Lemma 3. The proof is in two steps.

First, we show that �̂ is symmetric in 
d around zero; in the second step, we �nd the

optimal contract under the restriction that 
d � 0.
Note that, from Lemma 2, q̂dd depends on 
d only through its absolute value, j
dj.

Thus, from Lemma 3, equilibrium action ad = �dZdq̂
d
d also depends on j
dj only. This

implies the �rst term of the disagreement discount, �dad
�
qd � q̂dd

�
, depends only on

j
dj. We next show that, if 
d < 0, the second term of the disagreement discount,


dad0
�
qd0 � q̂dd0

�
, is unchanged by o¤ering cross pay, j
dj, rather than relative perfor-

mance evaluation, 
d < 0. From Lemma 2, let q̂
d+
d0 be the belief held by the DM when

receiving j
dj instead of 
d < 0. We will show 
dad0
�
qd0 � q̂dd0

�
= j
dj ad0

�
qd0 � q̂d+d0

�
.

Consider in turn cases (iii), (iv) and (v) in Lemma 2.

First, in case (v) we have that Hd < �e�d and q̂dd0 = (2� e��d) qd0. This implies
that replacing 
d with j
dj gives that jHdj > e�d and beliefs will be as in case (i).

Thus, setting q̂d+d0 = e
��dqd0 we obtain

j
dj ad0
�
qd0 � q̂d+d0

�
= j
dj ad0

�
1� e��d

�
qd0 = 
dad0

�
e��d � 1

�
qd0 = 
dad0

�
qd0 � q̂dd0

�
:

5



In case (iii), we have that jHdj < e��d . This implies that q̂d+d0 = q̂dd0 = qd0, so

j
dj ad0
�
qd0 � q̂d+d0

�
= 
dad0

�
qd0 � q̂dd0

�
= 0:

In case (iv), Hd 2 (�e�d ;�e��d) and q̂dd0 =
�
2�

h
e��d �dadqd

j
djad0qd0

i 1
2

�
qd0, giving


dad0
�
qd0 � q̂dd0

�
= 
dad

 �
e��d�dadqd
j
dj ad0qd0

� 1
2

� 1
!
qd0 = j
dj ad0

 
1�

�
e��d�dadqd
j
dj ad0qd0

� 1
2

!
qd0 :

This implies that replacing 
d with j
dj, beliefs will be as in case (ii). Thus, setting

q̂d+d0 =
h
e��d �dadqd

j
djad0qd0

i 1
2
qd0 we obtain

j
dj ad0
�
qd0 � q̂d+d0

�
= 
dad0

�
qd0 � q̂dd0

�
:

Therefore, �̂(
d) = �̂(j
dj) and �̂ is symmetric in 
d around zero.
Because HQ is indi¤erent between j
dj and 
d, it is su¢ cient to consider 
d � 0. If


d > e
�d �dadqd

ad0qd0
, division manager beliefs are in case (i) of Lemma 2, with q̂dd = qd and

q̂dd0 = e��dqd0, giving ad = �dZdqd. Thus,
@�̂
@
d

= �ad0qd0 (1� e��d) < 0, and setting


d > e
�d �dadqd

ad0qd0
is not optimal. Similarly, if 
d < e

��d �dadqd
ad0qd0

, division manager beliefs

are in case (iii) of Lemma 2, with q̂dd = e
��dqd and q̂dd0 = qd0, giving ad = �dZde

��dqd.

In addition, q̂dd0 = qd0 and q̂
d
d = e

��dqd together imply that @�̂
@
d

= 0 and it is weakly

optimal to set 
d � e��d
�dadqd
ad0qd0

. This implies that HQ set e��d �dadqd
ad0qd0

� 
d � e�d
�dadqd
ad0qd0

and induce beliefs that are in case (ii) of 2, with Hd 2 [e��d ; e�d ].
Because the participation constraint binds, HQ objective function becomes

�̂ = (1� bA � bB)0Q�ad +
�
ûA(�aA; q̂

A)� sA
�
+
�
ûB(�aB; q̂

B)� sB
�
:

where ûd(�ad; q̂d) = minq̂d2Cd ûd, with ûd = sd+ �d�adq̂
d
d + 
d�ad0 q̂

d
d0 �

�a2d
2Zd

= 0 and where

�ad is the Nash equilibrium given by (A1) in the proof of Lemma 3. This implies that

d�̂

d�d
= �qd�ad + (1� �d � 
d0) qd

@�ad
@�d

+ (1� �d0 � 
d) qd0
@�ad0

@�d

+
dûd(�ad; q̂

d(�ad; wd))

d�d
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d�d
:

Because @ûd
@�d

= �adq̂
d
d,

@ûd
@�ad0

= 
dq̂
d
d0, and

@�ad0
@�d

=
�ad0
8�d
, by applying the envelope theorem
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on ûd(�ad; q̂d), we obtain that

dûd(�ad; q̂
d(�ad; wd))

d�d
=
@ûd
@�d

+
@ûd
@�ad0

@�ad0

@�d
= �adq̂

d
d + 
dq̂

d
d0
�ad0

8�d
: (A2)

Similarly, because @ûd0
@�d

= 0, @ûd0
@�ad

= 
d0 q̂
d0
d , and

@�ad
@�d

= 3�ad
8�d
, by applying the envelope

theorem on ûd0(�ad0 ; q̂d
0
), we obtain that

dûd0(�ad0 ; q̂
d0(�ad0 ; wd0))

d�d
=
@ûd0

@�d
+
@ûd0

@�ad

@�ad
@�d

= 
d0 q̂
d0

d

3�ad
8�d

: (A3)

Together, (A2) and (A3) give that

d�̂

d�d
= ��ad

�
qd � q̂dd

�
+ (1� �d � 
d0) qd

3�ad
8�d

+ (1� �d0 � 
d) qd0
�ad0

8�d
(A4)

+
dq̂
d
d0
�ad0

8�d
+ 
d0 q̂

d0

d

3�ad
8�d

:

Consider now 
d. We have that

d�̂

d
d
= �qd0�ad0 + (1� �d � 
d0) qd

@�ad
@
d

+ (1� �d0 � 
d) qd0
@�ad0

@
d

+
dûd(�ad; q̂

d(�ad; wd))

d
d
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d
d
:

Because @ûd
@
d

= �ad0 q̂
d
d0,

@ûd
@�ad0

= 
dq̂
d
d0, and

@�ad0
@
d

=
�ad0
8
d
, by applying the envelope theorem

on ûd(�ad; q̂d), we obtain that

dûd(�ad; q̂
d(ad; wd))

d
d
=
@ûd
@
d

+
@ûd
@�ad0

@�ad0

@
d
= �ad0 q̂

d
d0 + 
dq̂

d
d0
�ad0

8
d
: (A5)

Similarly, because @ûd0
@
d

= 0, @ûd0
@�ad

= 
d0 q̂
d0
d , and

@�ad
@
d

= 3�ad
8
d
, by applying the envelope

theorem on ûd0(�ad0 ; q̂d
0
), we obtain that

dûd0(�ad0 ; q̂
d0(�ad0 ; wd0))

d
d
=
@ûd0

@
d
+
@ûd0

@�ad

@�ad
@
d

= 
d0 q̂
d0

d

3�ad
8
d

: (A6)

Together, (A5) and (A6) give that

d�̂

d
d
= ��ad0

�
qd0 � q̂dd0

�
+ (1� �d � 
d0) qd

3�ad
8
d

+ (1� �d0 � 
d) qd0
�ad0

8
d
(A7)

+
dq̂
d
d0
�ad0

8
d
+ 
d0 q̂

d0

d

3�ad
8
d

:
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Thus, from (A4) and (A7) we obtain the �rst-order conditions:

d�̂

d�d
= ��ad

�
qd � q̂dd

�
+
�d

�d
= 0;

d�̂

d
d
= ��ad0

�
qd0 � q̂dd0

�
+
�d


d
= 0;

where �d � (1� �d � 
d0) qd 3�ad8 + (1� �d0 � 
d) qd0
�ad0
8
+ 
dq̂

d
d0
�ad0
8
+ 
d0 q̂

d0
d
3�ad
8
, giving

�d�ad
�
qd � q̂dd

�
= 
d0�ad0

�
qd0 � q̂dd0

�
: (A8)

Because, from Lemma 2, �d�adq̂
d
d = 
d�ad0 q̂

d
d0, we have that (A8) implies that �d�adqd =


d�ad0qd0 and thus that Hd = 1, leading to q̂dd = q̂dd0 = e�
�d
2 qd and �ad = e�

�d
2 �dZdqd.

Substituting the values of 
d and �ad into HQ objective, we obtain

�̂ =
X

d;d02fA;Bg;
d0 6=d

"
�dZdqdq̂

d
d � 2�2dZdq̂dd

�
qd � q̂dd

�
�
�2dZd

�
q̂dd
�2

2

#
;

Di¤erentiating, we obtain

d�̂

d�d
= Zdqdq̂

d
d � 4�dZdq̂dd

�
qd � q̂dd

�
� �dZd

�
q̂dd
�2
= 0;

giving

�d =
1

1 + 3
�
1� q̂dd=qd

� :
Finally, setting Hd = 1 gives


d =
�adqd
�ad0qd0

�d = �d�d; where �d �
�adqd
�ad0qd0

:

Substituting for the values of �ad and �ad0, given the expression for beliefs in Lemma 2,

we obtain

�d =
1� 3

�
1� q̂d0d0=qd0

�
1� 3

�
1� q̂dd=qd

� q̂dd=qd
q̂d

0
d0qd0

Zdq
2
d

Zd0q2d0
:

If HQ implement the symmetric contract, with 
d = �
�adq

d
d

�ad0q
d
d0
�d, we obtain that q̂

d
d0 =�

2� e�
�d
2

�
qd0. Thus j
dj = �d�d. If divisions are symmetric, and condition (S) holds,

�d = 1. Comparative statics follow by direct di¤erentiation.

Proof of Theorem 4. Because the participation constraint (33) binds, HQ payo¤,
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�̂, now is equal toX
d;d02fA;Bg

d0 6=d

"
(1� �d � 
d0) qdad + �dadq̂dd + 
dad0 q̂dd0 �

a2d
2Zd

�
r�2

�
�2d + 2�d
d�+ 


2
d

�
2

#

where faA; aBg are the Nash equilibrium e¤ort levels of Lemma 3.

Di¤erent from the case of Theorem 3, because of the presence of the last term,

HQ objective function �̂ admits multiple strict local maxima. The proof therefore

proceeds in two steps. First, we consider candidate optimal contracts that induce

division managers to hold one of four possible con�gurations of beliefs (implied by

Lemma 2). Speci�cally, we consider contracts as follows. Case (A): a small exposure

to the other division leading to jHdj < e��d , corresponding to case (iii) of Lemma

2; Case (B): a moderate positive exposure to the other division, leading to Hd 2
(e��d ; e�d), corresponding to case (ii) of Lemma 2; Case (C): a moderate negative

exposure to the other division, leading to Hd 2 (�e�d ;�e��d), corresponding to case
(iv) of Lemma 2; Case (D): a large (negative or positive) exposure to the other

division, leading to jHdj > e�d corresponding to cases (i) and (v) of Lemma 2. Second,
we compare payo¤s to HQ from optimal contracts in these regions and we determine

the globally optimal contract.

Case (A): If jHdj < e��d , have q̂dd = e��dqd and q̂dd0 = qd0, which do not depend on

d. Similarly, by Lemma 3, ad = �dZde

��dqd, which does not depend on 
d as well.

Therefore, setting
@�̂

@
d
= �r�2 (��d + 
d) = 0

gives 
d = ���d and 
d is set to hedge risk with no e¤ect on incentives. Substituting
in �̂ and di¤erentiating we obtain

@�̂

@�d
= (1� 2�d)Zdqq̂dd + �dZd

�
q̂dd
�2 � r�2�d �1� �2�

Therefore

�1d �
1

1 +
�
1� q̂dd=q

�
+ r�2 (1� �2) =(Zqq̂dd)

:

After substitution, this gives HQ payo¤ under condition (S)

�̂1 � [e��Zq2]
2

(2� e��) e��Zq2 + r�2 (1� �2) :
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Case (B): If Hd 2 (e��; e�), we can express the payo¤ to HQ as

�̂ = (1� bA � bB)0Qa+
�
ûA(aA; q̂

A(aA; wA))� sA
�
+
�
ûB(aB; q̂

B(aB; wB))� sB
�
;

where ûd(ad; q̂d(ad; wd)) = minq̂d2Cd ûd, with

ûd(ad; q̂
d(ad; wd)) = �dadq̂

d
d + 
dad0 q̂

d
d0 �

r�2

2

�
�2d + 2��d
d + 


2
d

�
� a2d
2Zd

= 0;

and where �ad is the Nash equilibrium given by (A1). Because ûd is strictly concave and

the minimum operator is concave, ûd(ad; q̂d(ad; wd)) is strictly concave. Therefore, �̂

is strictly concave as well. Thus, �rst-order conditions of optimality are su¢ cient for

a local optimum. Similar to the proof of Theorem 3, we have

d�̂

d�d
= �qd�ad + (1� �d � 
d0) qd

@�ad
@�d

+ (1� �d0 � 
d) qd0
@�ad0

@�d

+
dûd(�ad; q̂

d(�ad; wd))

d�d
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d�d
:

In this region, from (A1), we have @�ad
@�d

= 3�ad
8�d

and @�ad0
@�d

=
�ad0
8�d
. Because @ûd

@�ad0
= 
dq̂

d
d0

and @ûd
@�d

= adq̂
d
d � r�2 (�d + �
d), by applying the envelope theorem on ûd(�ad; q̂d):

dûd(�ad; q̂
d(�ad; wd))

d�d
= adq̂

d
d � r�2 (�d + �
d) + 
dq̂dd0

�ad0

8�d
: (A9)

Similarly, because @ûd0
@�d

= 0 and @ûd0
@�ad

= 
d0 q̂
d0
d , from (A9) and (A3) we obtain

d�̂

d�d
= �ad

�
qd � q̂dd

�
+ (1� �d � 
d0) qd

3�ad
8�d

+ (1� �d0 � 
d) qd0
�ad0

8�d
(A10)

�r�2 (�d + �
d) + 
dq̂dd0
�ad0

8�d
+ 
d0 q̂

d0

d

3�ad
8�d

:

Consider now 
d. We have that

d�̂

d
d
= �qd0�ad0 + (1� �d � 
d0) qd

@�ad
@
d

+ (1� �d0 � 
d) qd0
@�ad0

@
d

+
dûd(�ad; q̂

d(�ad; wd))

d
d
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d
d
:

Because @ûd
@
d

= �ad0 q̂
d
d0,

@ûd
@�ad0

= 
dq̂
d
d0, and

@�ad0
@
d

=
�ad0
8
d
, by applying the envelope theorem

on ûd(�ad; q̂d), we obtain that

dûd(�ad; q̂
d(ad; wd))

d
d
= ad0 q̂

d
d0 � r�2 (
d + ��d) + 
dq̂dd0

�ad0

8
d
: (A11)
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Similarly, because @ûd0
@
d

= 0, @ûd0
@�ad

= 
d0 q̂
d0
d , and

@�ad
@
d

= 3�ad
8
d
, from (A11) and (A6) we

obtain

d�̂

d
d
= ��ad0

�
qd0 � q̂dd0

�
+ (1� �d � 
d0) qd

3�ad
8
d

+ (1� �d0 � 
d) qd0
�ad0

8
d
(A12)

�r�2 (
d + ��d) + 
dq̂dd0
�ad0

8
d
+ 
d0 q̂

d0

d

3�ad
8
d

:

Thus, from (A10) and (A12), we obtain the �rst-order conditions

d�̂

d�d
= ��ad

�
qd � q̂dd

�
� r�2 (�d + �
d) +

�d

�d
= 0;

d�̂

d
d
= ��ad0

�
qd0 � q̂dd0

�
� r�2 (
d + ��d) +

�d


d
= 0;

where �d � (1� �d � 
d0) qd 3�ad8 + (1� �d0 � 
d) qd0
�ad0
8
+ 
dq̂

d
d0
�ad0
8
+ 
d0 q̂

d0
d
3�ad
8
, giving

�d�ad
�
qd � q̂dd

�
+ r�2

�
�2d + �
d�d

�
= 
d�ad0

�
qd0 � q̂dd0

�
+ r�2

�

2d + ��d
d

�
:

By Lemma 2, we have that �d�adq̂
d
d = 
d�ad0 q̂

d
d0, which implies that

�d�adqd + r�
2�2d = 
d�ad0qd0 + r�

2
2d

We will guess and verify that, due to the symmetry condition (S), it is optimal to

implement symmetric e¤ort, �ad = �ad0 = �a, and that qd = q, �d = �, and Zd = Z.

De�ne f (x) � x�aq + r�2x2. Note f 0 (x) = �aq + 2r�2x > 0 for x > 0, so that f is

monotonic over positive numbers and f (
d) = f (�d) if and only if 
d = �d. Thus,

q̂dd = q̂dd0 = e�
�
2 q and �ad = e�

�
2Z�

3
4
d �

1
4

d0q. In order to optimally implement the same

e¤ort, it must be that �d = �d0, so �a = e�
�
2Z�q. Thus, we obtain the �rst-order

condition

d�̂

d�d
= �Z�dq̂dd

�
q � q̂dd

�
+ (1� 2�d) qq̂dd

Z

2
� r�2�d (1 + �) +

Z�d
�
q̂dd
�2

2
= 0:

Therefore

�2d �
1

1 + 3
�
1� q̂dd=q

�
+ 2r�2 (1� j�j) =(Zqq̂dd)

:

After substitution, this gives HQ payo¤

�̂2 � Z2e��q4

Ze�
�
2 q2
�
4� 3e��

2

�
+ 2r�2 (1 + �)

:

Because �d is the same for both divisions, this veri�es that a is symmetric. Because
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HQ objective �̂ is strictly concave on this region, there is only one solution on this

region, which implies that the symmetric solution is the unique solution.

Case (C): Consider Hd 2 (�e�;�e��) with �d > 0 > 
d. Following the same

process as in case (B) above, we have

d�̂

d�d
= �qd�ad + (1� �d � 
d0) qd

@�ad
@�d

+ (1� �d0 � 
d) qd0
@�ad0

@�d

+
dûd(�ad; q̂

d(�ad; wd))

d�d
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d�d
:

Because in this region @�ad
@�d

= 3�ad
8�d

and @�ad0
@�d

=
�ad0
8�d
, from (A9) and (A3) we obtain that

d�̂

d�d
= �ad

�
qd � q̂dd

�
+ (1� �d � 
d0) qd

3�ad
8�d

+ (1� �d0 � 
d) qd0
�ad0

8�d
(A13)

�r�2 (�d + �
d) + 
dq̂dd0
�ad0

8�d
+ 
d0 q̂

d0

d

3�ad
8�d

:

Consider now 
d. We have that

d�̂

d
d
= �qd0�ad0 + (1� �d � 
d0) qd

@�ad
@
d

+ (1� �d0 � 
d) qd0
@�ad0

@
d

+
dûd(�ad; q̂

d(�ad; wd))

d
d
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d
d
:

Because @�ad
@
d

= 3�ad
8
d
, @�ad0
@
d

=
�ad0
8
d

and @ûd
@�ad0

= 
dq̂
d
d0, by applying the envelope theorem on

ûd0(�ad0 ; q̂
d0), we obtain that

dûd(�ad; q̂
d(ad; wd))

d
d
= ad0 q̂

d
d0 � r�2 (
d + ��d) + q̂dd0

�ad0

8
: (A14)

Similarly, because @ûd0
@
d

= 0, @ûd0
@�ad

= 
d0 q̂
d0
d , and

@�ad
@
d

= 3�ad
8
d
, by applying the envelope

theorem on ûd0(�ad0 ; q̂d
0
), we obtain that

dûd0(�ad0 ; q̂
d0(�ad0 ; wd0))

d
d
= 
d0 q̂

d0

d

3�ad
8
d

: (A15)

Together (A14) and (A15) give that

d�̂

d
d
= ��ad0

�
qd0 � q̂dd0

�
+ (1� �d � 
d0) qd

3�ad
8
d

+ (1� �d0 � 
d) qd0
�ad0

8
d
(A16)

�r�2 (
d + ��d) + q̂dd0
�ad0

8
+ 
d0 q̂

d0

d

3�ad
8
d

:
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Thus, from (A13) and (A16), we obtain the �rst-order conditions

d�̂

d�d
= ��ad

�
qd � q̂dd

�
� r�2 (�d + �
d) +

�d

�d
= 0;

d�̂

d
d
= ��ad0

�
qd0 � q̂dd0

�
� r�2 (
d + ��d) +

�d


d
= 0;

where �d � (1� �d � 
d0) qd 3�ad8 + (1� �d0 � 
d) qd0
�ad0
8
+ 
dq̂

d
d0
�ad0
8
+ 
d0 q̂

d0
d
3�ad
8
, giving

�d�ad
�
qd � q̂dd

�
+ r�2

�
�2d + �
d�d

�
= 
d�ad0

�
qd0 � q̂dd0

�
+ r�2

�

2d + ��d
d

�
: (A17)

Again, in this region, q̂dd = [e
��d jHdj]

1
2 qd; and q̂dd0 =

�
2�

�
e��d jHdj�1

� 1
2

�
qd0, where

Hd =

dad0qd0
�dadqd

. Thus,


d�ad0
�
qd0 � q̂dd0

�
= 
d�ad0qd0

�
e�

�d
2 jHdj�

1
2 � 1

�
= �
d�ad0qd0�e�

�d
2 (�dadqd j
dj ad0qd0)

1
2 :

Similarly,

�d�adq̂
d
d = e

��d
2 (�d�adqd j
dj �ad0qd0)

1
2

Therefore, after substitution, we obtain that (A17) becomes

�d�adqd + r�
2�2d = j
dj �ad0qd0 + r�2
2d:

We guess again that HQ optimally implement the same e¤ort from both divisions,

�ad = �ad0, which implies that f (j
dj) = f (�d), where again f (x) � x�aq+ r�2x2. This
implies that j
dj = �d, or equivalently, that 
d = ��d, so that Hd = �1. Thus,
q̂dd = e

��
2 q; and q̂dd0 =

�
2� e��

2

�
q. To be consistent with this guess, it must be that

�d0 = �d, so that �ad = �ad0 = e�
�
2Z�dq. Substituting in �̂ and di¤erentiating we

obtain

d�̂

d�d
= �Z�dq̂dd

�
qd � q̂dd

�
� r�2� (1 + �) + 1

2
(1� 2�d)Zqq̂dd +

1

2
�dZ

�
q̂dd
�2

�3d �
1

1 + 3(1� 3q̂dd=q) + 2r�2 (1� �) =(Zqq̂dd)
:

After substitution, this gives HQ payo¤

�̂3 � Z2e��q4

Ze�
�
2 q2
�
4� 3e��

2

�
+ 2r�2 (1� �)

;

which veri�es the guess that HQ optimally implements symmetric e¤ort. Comparing

�̂2 and �̂3, observe that they di¤er only for the �nal term in the denominator. Thus,
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�̂3 R �̂2 as � R 0, and

max
�
�̂2; �̂3

	
=

Z2e��q4

Ze�
�
2 q2
�
4� 3e��

2

�
+ 2r�2 (1� j�j)

:

Case (D): If 
d > e
��d, we have that q̂

d
d = qd and q̂

d
d0 = e

��qd0, so

@�̂

@
d
= �ad0qd0

�
1� e��

�
� r�2 (��d + 
d) < 0;

and setting 
d > e
��d is not optimal. Similarly, if 
d < �e��d, we have that q̂dd = qd

and q̂dd0 = (2� e��) q

@�̂

@
d
= ad0qd0

�
1� e��

�
+ r�2 (j
dj � ��d) > 0

and setting 
d < �e��d is not optimal. Thus, under symmetry, jHdj � e�.
The second and �nal step is to compare max

�
�̂2; �̂3

	
and �̂1. Let

f (�) � 2
�
1� e��

2

�2
Zq2 + r�2 (1� j�j) [e� (1 + j�j)� 2] ;

so that max
�
�̂2; �̂3

	
> �̂1 if and only if f > 0. Note f (0) = �r�2 (1� j�j)2 < 0,

f 0 (�) = 2
�
1� e��

2

�
e�

�
2Zq2 + r�2e�

�
1� �2

�
> 0

and lim�!1 f (�) = +1, which implies there is a unique �� such that max
�
�̂2; �̂3

	
>

�̂1 if and only if � > ��. Thus, for � � �� the optimal contract is in Case (A), with

�d = �1d and 
d = ���d, leading to (37), and for � > �� the optimal contract is in

Case (B) for � < 0, with �d = �2d and j
dj = �d, or in Case (C) for � > 0, with

�d = �
3
d and j
dj = �d, leading to (38).

Finally, note that the �rst term of f , 2
�
1� e��

2

�2
Zq2, is strictly positive. Because

f (��) = 0, it must be that r�2 (1� j�j) [e�� (1 + j�j)� 2] < 0. This implies that @f
@r
=

�2 (1� j�j) [e� (1 + j�j)� 2] < 0 in a neighborhood of ��. By the implicit function

theorem, we obtain that d��
dr
= �

@f
@r

f 0(�) > 0, and �� is increasing in r. Finally, for � 6= 0,
de�ne �� � � ln (j�j) and note that

f (��) = 2
�
1�

p
j�j
�2
Zq2 + r�2

(1� j�j)2

j�j > 0

which implies that �� < ��.

Proof of Corollary 1. In the proof of Theorem 4, we showed that �dadqd+r�
2�2d =
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j
dj ad0qd0 + r�2
2d. De�ne f (�d; j
dj) = �dadqd+ r�2�2d� j
dj ad0qd0 � r�2
2d, and note
that in an optimal contract, f = 0. Note also that f (�d; �d) = �d (adqd � ad0qd0) > 0
and that

f

�
�d;

adqd
ad0qd0

�d

�
= r�2�2d

�
1� a2dq

2
d

a2d0q
2
d0

�
< 0:

Thus, f (�d; j
dj) = 0 implies j
dj 2 (�d; adqdad0qd0
�d) for

adqd
ad0qd0

> 1, and j
dj 2 ( adqdad0qd0
�d; �d; )

for adqd
ad0qd0

< 1:

Proof of Lemma 4. Proof is isomorphic to proof for Lemma 2 and is omitted.

Proof of Theorem 5. We guess and verify that headquarters have positive exposure

to both divisions, �d = 1� �d � 
d > 0, and that beliefs are as in case (ii) of Lemma
4, HHQ

d 2 (e��HQ ; e�HQ). Because (33) binds and r = 0, HQ payo¤ �̂ is equal toX
d;d02fA;Bg

d6=d0

h
adqd � (1� �d � 
d0) ad

�
qd � q̂HQd

�
� �dad

�
qd � q̂dd

�
� 
dad0

�
qd0 � q̂dd0

�i
;

where q̂d = (q̂dd; q̂
d
d0) are division manager beliefs from Lemma 2, ad are the Nash

equilibrium e¤ort levels from Lemma 3, and q̂HQ = (q̂HQd ; q̂HQd0 ) are HQ beliefs from

Lemma 4. The proof is in two steps and is similar to the proof of Theorem 3. First,

we show that 
d < 0 is suboptimal; then we �nd the optimal contract for 
d � 0.
Similar to Theorem 3, switching from 
d to j
dj does not a¤ect q̂dd, and thus does

not a¤ect ad and �dad
�
qd � q̂dd0

�
. Letting again q̂d+d0 be the belief held by a division

manager when receiving j
dj instead of 
d < 0, we have that 
dad0
�
qd0 � q̂dd0

�
=

j
dj ad0
�
qd0 � q̂d+d0

�
for all 
d < 0. This implies that

(1� �d0 � j
dj) ad0
�
qd0 � q̂HQd0

�
< (1� �d0 � 
d) ad0

�
qd0 � q̂HQd0

�
for 
d < 0 because q̂

HQ
d0 < qd0, and thus that setting 
d < 0 is dominated by o¤ering

its absolute value, j
dj .
Because HQ strictly prefers o¤ering j
dj > 0 to all 
d < 0, it is su¢ cient to consider


d � 0. If HQ sets 
d > e�d
�dadqd
ad0qd0

, division manager beliefs are in case (i) of Lemma 2,

with q̂dd = qd and q̂
d
d0 = e

��qd0, giving ad = �dZdqd. Thus,
@�̂
@
d

= �ad0
�
q̂HQd0 � q̂dd0

�
< 0

because q̂HQd0 2 (e��HQqd; qd) and �HQ < �, so setting 
d > e�d
�dadqd
ad0qd0

is not optimal.

Similarly, if 0 < 
d < e
��d �dadqd

ad0qd0
, division managers beliefs are in case (iii) of Lemma

2, with q̂dd = e��dqd and q̂dd0 = qd, giving ad = �dZde
��dqd. In addition, @�̂

@
d
=
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ad0
�
q̂dd0 � q̂

HQ
d0

�
> 0 because q̂HQd0 2 (e��HQqd; qd), so setting 
d < e��d �dadqd

ad0qd0
is not

optimal. This implies that HQ set e��d �dadqd
ad0qd0

� 
d � e�d
�dadqd
ad0qd0

and induce beliefs that

are in case (ii) of Lemma 2, with Hd 2 (e��; e�).
Similar to the proof of Theorem 3, we can express HQ�s objective as

�̂ = �A�aAq̂
HQ
A +�B�aB q̂

HQ
B +

�
ûA(aA; q̂

A(aA; wA))� sA
�
+
�
ûB(aB; q̂

B(aB; wB))� sB
�
;

where �d = 1� �d � 
d0, ûd(�ad; q̂d) = minq̂d2Cd ûd, with ûd = sd + �d�adq̂dd + 
d�ad0 q̂dd0 �
�a2d
2Zd

= 0; and �ad is the Nash equilibrium of division managers given by (A1) in the

proof of Lemma 3. Consider �rst

d�̂

d�d
= �q̂HQd �ad + �d�ad

@q̂HQd
@�d

+ �d0�ad0
@q̂HQd0

@�d
+ �dq̂

HQ
d

@�ad
@�d

+ �d0 q̂
HQ
d0
@�ad0

@�d

+
dûd(�ad; q̂

d(�ad; wd))

d�d
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d�d
:

Because q̂HQ solves (40), from the envelope theorem �d�ad
@q̂HQd
@�d

+�d0�ad0
@q̂HQ
d0
@�d

= 0, which,

together with (A2) and (A3) from the proof of Theorem 3, gives

d�̂

d�d
= ��ad

�
q̂HQd � q̂dd

�
+ �dq̂

HQ
d

3ad
8�d

+ �d0 q̂
HQ
d0

ad0

8�d
+ 
dq̂

d
d0
�ad0

8�d
+ 
d0 q̂

d0

d

3�ad
8�d

: (A18)

Consider now 
d. Applying again the envelope theorem on �̂
�
q̂HQ

�
, we obtain

d�̂

d
d
= �q̂HQd0 �ad0 + �dq̂

HQ
d

@�ad
@
d

+ �d0 q̂
HQ
d0
@�ad0

@
d

+
dûd(�ad; q̂

d(�ad; wd))

d
d
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d
d
:

Substituting (A5) and (A6) from the proof of Theorem 3 gives

d�̂

d
d
= ��ad0

�
q̂HQd0 � q̂dd0

�
+ �dq̂

HQ
d

3�ad
8
d

+ �d0 q̂
HQ
d0

�ad0

8
d
+ 
dq̂

d
d0
�ad0

8
d
+ 
d0 q̂

d0

d

3�ad
8
d

: (A19)

Thus, from (A18) and (A19) we obtain the �rst-order conditions

d�̂

d�d
= ��ad

�
q̂HQd � q̂dd

�
+
�d

�d
= 0;

d�̂

d
d
= ��ad0

�
q̂HQd0 � q̂dd0

�
+
�d


d
= 0;

where �d � �dq̂
HQ
d

3�ad
8
+ �d0 q̂

HQ
d0

�ad0
8
+ 
dq̂

d
d0
�ad0
8
+ 
d0 q̂

d0
d
3�ad
8
, giving

�d�ad

�
q̂HQd � q̂dd

�
= 
d0�ad0

�
q̂HQd0 � q̂dd0

�
: (A20)
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Because, from Lemma 2, �d�adq̂
d
d = 
d�ad0 q̂

d
d0, we have that (A20) implies �d�adq̂

HQ
d =


d�ad0 q̂
HQ
d0 . Because H

HQ
d 2 (e��HQ ; e�HQ), from Lemma 4, �dadq̂

HQ
d = �d0ad0 q̂

HQ
d0 .

Thus,
ad0 q̂

HQ

d0

adq̂
HQ
d

= �d

d
= �d

�d0
. De�ne md such that �d = md�d, so 
d = md�d0, which

implies �d = 1 � �d � 
d0 = 1
1+md+md0

, and thus �d = 
d =
md

1+md+md0
. Substitut-

ing in 
d = �d into �a from Lemma 3, we have �ad = (Z3dZd0)
1
4 e�

�
2 (�3d�d0)

1
4 (qdqd0)

1
2 .

Substituting into HQ objective, we obtain

�̂ = (ZAZB)
1
2 qAqB(�A�B)

1
2

�
2e�

�HQ
2 e�

�
2 (1� �A � �B) +

3

2
e��(�A + �B)

�
:

Di¤erentiating, we obtain the �rst-order condition

d�̂

d�d
= (ZAZB)

1
2 qdqd0(�

�1
d �d0)

1
2

�
e�

�HQ
2 (1� 3�d � �d0) e�

�
2 +

3

4
e��(3�d + �d0)

�
= 0;

giving

e
1
2(���HQ) + 3

�
3

4
� e

1
2(���HQ)

�
�d +

�
3

4
� e

1
2(���HQ)

�
�d0 = 0:

Because this holds for both divisions, after solving we obtain

�A = �B =
1

4� 3e
1
2(�HQ��)

=
1

1 + 3(1� q̂dd=q̂
HQ
d )

= 
d;

giving (45). Note � < 1
2
because �HQ < � � 2 ln 32 and H

HQ
d = �d 2 (e��HQ ; e�HQ).

This implies that �ad =
(Z3dZd0)

1
4 e�

�
2 (qdqd0 )

1
2

4�3e
1
2(�HQ��)

, and thus that q̂dd = e�
�
2 qd�

1
2
d and q̂

HQ
d =

e�
�HQ
2 qd�

1
2
d . Similarly, (43) and (44) follow by direct substitution.

Proof of Theorems 6-8. Because the participation constraint (33) binds, we can

express HQ�s payo¤ as

�̂ = �AaAq̂
HQ
A +�BaB q̂

HQ
B +

�
ûA(aA; q̂

A(aA; wA))� sA
�
+
�
ûB(aB; q̂

B(aB; wB))� sB
�
;

where �d = 1� �d � 
d0 and ûd(ad; q̂d(ad; wd)) = minq̂d2Cd ûd, with

ûd(ad; q̂
d(ad; wd)) = sd + �dadq̂

d
d + 
dad0 q̂

d
d0 �

r�2

2

�
�2d + 2��d
d + 


2
d

�
� a2d
2Zd

= 0;

where q̂d is from Lemma 2, ad is from Lemma 3, and q̂HQ is from Lemma 4. Di¤erent

from Theorem 5, and similar to Theorem 4, because of division manager risk aversion,

HQ objective function � admits again multiple strict local maxima. The proof pro-
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ceeds again in two steps. First, we consider candidate optimal contracts that induce

division managers to hold one of four possible con�gurations of beliefs (implied by

Lemma 2) in the same four cases examined in the proof of Theorem 4, Cases (A) to

(D). Second, we compare payo¤s to HQ from optimal contracts in these regions and

we determine the globally optimal contract. Note that optimal contracts falling in

Case (A) and Case (B) correspond to Theorem 6, Case (C) corresponds to Theorem

7. Finally, the comparison of payo¤s from Case (B) and Case (C) gives Theorem 8.

Case (A): If jHdj < e��d , have q̂dd = e��dqd and q̂dd0 = qd0, which do not depend on

d. Similarly, by Lemma 3, ad = �dZde

��dqd, which implies that both ad and ad0 do

not depend on 
d. Therefore,

d�̂

d
d
= �q̂HQd0 ad0 + �dad

@q̂HQd
@
d

+ �d0ad0
@q̂HQd0

@
d
+ �dq̂

HQ
d

@ad
@
d

+ �d0 q̂
HQ
d0
@ad0

@
d

+
dûd(ad; q̂

d(ad; wd))

d
d
+
dûd0(ad0 ; q̂

d0(ad0 ; wd0))

d
d
;

where, by the envelope theorem on �̂, we have �dad
@q̂HQd
@
d

+�d0ad0
@q̂HQ
d0
@
d

= 0. In addition,

on this region, @ad
@
d

=
@ad0
@
d

= 0, which implies that dûd(ad;q̂
d(ad;wd))
d
d

= @û
@
d

= ad0 q̂
d
d0 �

r�2 (��d + 
d) and
dûd0 (ad0 ;q̂

d0 (ad0 ;wd0 ))
d
d

=
@ûd0
@
d

= 0. Thus,

@�̂

@
d
= ad0

�
qd0 � q̂HQd0

�
� r�2 (��d + 
d) :

Because HQ has long exposure to the symmetric divisions, q̂HQd = q̂HQd0 = e�
�HQ
2 q.

Thus, @�̂
@
d

= 0 if and only if 
 = �M�, where M � �� �� and �� � Zq̂dd
r�2

�
qd0 � q̂HQd0

�
=

e��Zq2

r�2

�
1� e�

�HQ
2

�
. Following a similar approach, we obtain

d�̂

d�d
= q̂dd q̂

HQ
d Z (1� 2�d)�M�d

�
qd0 � q̂HQd0

�
q̂ddZ + �dZ

�
q̂dd
�2 � r�2�d (1� �M) :

Note 1 � �M = 1 � �2 + ��� and 1 � 2�M + M2 = 1 � �2 + ��2, so 1 � �M =

1 � 2�M +M2 + �� (�� ��). Also, r�2�d�� (�� ��) = Z
�
qd0 � q̂HQd0

�
q̂dd (�� ��). Thus,

we obtain the �rst-order condition

d�̂

d�d
= q̂dd q̂

HQ
d Z (1� 2�d) + �dZ

�
q̂dd
�2

�2M�d
�
qd0 � q̂HQd0

�
q̂ddZ � r�2�d

�
1� 2�M +M2

�
= 0;
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which implies

�4d �
1

1 + 2(�� ��)
�

q̂d
d0

q̂HQ
d0
� 1
�
+
�
1� q̂dd

q̂HQd

�
+ r�2(1��2+��2)

Zq̂HQd q̂dd

;

giving (46). After substitution, this gives HQ payo¤

�̂4 � e�(�HQ+2�)Z2q4�
2M + 2 (1�M) e�

�HQ
2 � e��

�
e��Zq2 + r�2 (1� 2�M +M2)

:

Case (B): If Hd 2 (e��; e�), as in the proof of Theorem 5, applying the envelope

theorem on �̂
�
q̂HQ

�
, we have

d�̂

d�d
= �q̂HQd �ad + (1� �d � 
d0) q̂

HQ
d

@�ad
@�d

+ (1� �d0 � 
d) q̂
HQ
d0
@�ad0

@�d

+
dûd(�ad; q̂

d(�ad; wd))

d�d
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d�d
:

Because in this region @�ad
@�d

= 3�ad
8�d

and @�ad0
@�d

=
�ad0
8�d
, from (A9) and (A3), we have

d�̂

d�d
= �ad

�
q̂HQd � q̂dd

�
+ (1� �d � 
d0) q̂

HQ
d

3�ad
8�d

+ (1� �d0 � 
d) q̂
HQ
d0

�ad0

8�d

�r�2 (�d + �
d) + 
dq̂dd0
�ad0

8�d
+ 
d0 q̂

d0

d

3�ad
8�d

: (A21)

Consider now 
d. Applying again the envelope theorem on �̂
�
q̂HQ

�
, we have

d�̂

d
d
= �qd0�ad0 + (1� �d � 
d0) q̂

HQ
d

@�ad
@
d

+ (1� �d0 � 
d) q̂
HQ
d0
@�ad0

@
d

+
dûd(�ad; q̂

d(�ad; wd))

d
d
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d
d
:

Because in this region @�ad
@
d

= 3�ad
8
d

and @�ad0
@
d

=
�ad0
8
d
, from (A11) and (A6), we have that

d�̂

d
d
= ��ad0

�
qd0 � q̂dd0

�
+ (1� �d � 
d0) q̂

HQ
d

3�ad
8
d

+ (1� �d0 � 
d) q̂
HQ
d0

�ad0

8
d

�r�2 (
d + ��d) + 
dq̂dd0
�ad0

8
d
+ 
d0 q̂

d0

d

3�ad
8
d

: (A22)
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Thus, from (A21) and (A22) we obtain the �rst-order conditions

d�̂

d�d
= �ad

�
q̂HQd � q̂dd

�
� r�2 (�d + �
d) +

�d

�d
= 0

d�̂

d
d
= �ad0

�
q̂HQd0 � q̂dd0

�
� r�2 (��d + 
d) +

�d


d
= 0;

where �d = �dq̂
HQ
d

3ad
8
+ �d0 q̂

HQ
d0

ad0
8
+ 
dq̂

d
d0
ad0
8
+ 
d0 q̂

d0
d
3ad
8
, giving

�dad

�
q̂HQd � q̂dd

�
+ r�2

�
�2d + �
d�d

�
= 
dad0

�
q̂HQd0 � q̂dd0

�
+ r�2

�
�
d�d + 


2
d

�
From Lemma 2, we have �dadq̂

d
d = 
dad0 q̂

d
d0. Also, because �d > 0 and HQ has beliefs

as in case (ii) of Lemma 4, with �dadq̂
HQ
d = �d0ad0 q̂

HQ
d0 , we have

�dadq̂
HQ
d + r�2�2d = 
d

�d
�d0
adq̂

HQ
d + r�2
2d: (A23)

We now show that �A = �B. Suppose to the contrary that �A > �B. Because (A23)

holds for both divisions, �A > 
A but �B < 
B. This would imply, however, that

�A = 1� �A � 
B < 1� �B � 
A = �B, which is a contradiction. Similarly, �A < �B
would also imply a contradiction. Thus, �A = �B. Further, this implies�

adq̂
HQ
d + r�2 (�d + 
d)

�
(�d � 
d) = 0: (A24)

Since the �rst term is strictly positive, �d = 
d. Further, because the divisions are

symmetric, the �rst-order conditions are symmetric, which implies the existence of a

symmetric solution, �A = �B. Because the problem is strictly concave on this region,

this must be the unique solution. Thus, aA = aB = e�
�
2Z�q. Also, q̂HQd = q̂HQd0 =

e�
�HQ
2 q and q̂dd = q̂

d
d0 = e

��
2 q, so �d = (1� 2�) e�

�HQ
2 q e

��
2 Z�q
2

+ �e�
�
2 q e

��
2 Z�q
2

, which

gives the �rst-order condition

d�̂

d�d
=
1

2
Zq̂dd q̂

HQ
d � 2�Zq̂dd q̂

HQ
d +

3

2
Z�
�
q̂dd
�2 � r�2� (1 + �) = 0:

and thus

�5d �
1

1 + 3
�
1� q̂dd=q̂

HQ
d

�
+ 2r�2(1+�)

Zq̂HQd q̂dd

= �̂;

giving (47). After substitution, this gives HQ payo¤

�̂5 � Z2q4e�(�HQ+�)

Zq2
�
4e�

(�HQ+�)

2 � 3e��
�
+ 2r�2 (1 + �)

:
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Theorem 5 showed that 
d > 0 is optimal when r = 0. Similarly, 
d > 0 when

� = 0. Further, for � < 0, granting 
d < 0 results in a larger risk premium,
r�2

2

�
�2d + 2��d + 


2
d

�
, than setting 
d > 0. Thus, Case (B) dominates Case (C) for all

� � 0. To conclude the proof of Theorem 6, note that �̂5 � �̂4 if and only if gL � 0,
where

gL �
�
2M + 2 (1�M) e�

�HQ
2 + 2e�� � 4e�

(�HQ+�)

2

�
e��Zq2

+r�2
�
1� 2�M +M2 � 2e�� (1 + �)

�
:

and note that gLj�=�HQ=0 = �r�2 (1 + �)2 < 0, which implies that �̂4 > �̂5 for

� = �HQ = 0. Note also that @gL
@M

= 2
�
1� e�

�HQ
2

�
e��Zq2 + 2r�2 (M � �) = 0,

because M � � � �� and �� � e��Zq2

r�2

�
1� e�

�HQ
2

�
, and thus that @gL

@�
= �gL +

2
�
e�

(�HQ+�)

2 � e��
�
e��Zq2 + r�2 (1� 2�M +M2) > 0 for all gL < 0. This implies

that, for a given �HQ, there is a unique �̂ so that gL (�̂; �HQ) = 0, and for all � > �̂,

it is gL > 0 and thus �̂
5 > �̂4.

Consider now �HQ. Note �rst that
@gL
@�HQ

=
�
2e�

�
2 � (1�M)

�
e�

�HQ
2 e��Zq2 > 0

for � < �0 � �2 ln 1
2
(1�M). Substituting �0 in gL, we obtain

gLj�=�0 �
(1 +M)2 (1�M)2

8
Zq2 + r�2

 
1� 2�M +M2 � (1�M)

2

4
(1 + �)

!
> 0;

where the inequality is obtained by noting that h (�) � 1�2�M+M2� (1�M)2

4
(1 + �)

is linear in � for any given M , thus achieving its minimum at an endpoint. Because

h (1) = 1
2
(1�M)2 > 0 and h (�1) = (1 +M)2 > 0, we have that h (�) > 0 for

all � 2 [�1; 1], and thus that gLj�=�0 > 0. This implies that in the neighborhood of
gL = 0, � < �0, and thus that

@gL
@�HQ

> 0. Thus, there is a unique �̂HQ (allowing for

the possibility that �̂HQ = 0) such that �̂
2 > �̂1 for � > �̂HQ, proving Theorem 6.

Case (C): Consider Hd 2 (�e�;�e��) with �d > 0 > 
d. This case gives Theorem
7. As in Case (B),

d�̂

d�d
= �q̂HQd �ad + (1� �d � 
d0) q̂

HQ
d

@�ad
@�d

+ (1� �d0 � 
d) q̂
HQ
d0
@�ad0

@�d

+
dûd(�ad; q̂

d(�ad; wd))

d�d
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d�d
:
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Because @�ad
@�d

= 3�ad
8�d

and @�ad0
@�d

=
�ad0
8�d
, from (A9) and (A3) we have that

d�̂

d�d
= �ad

�
q̂HQd � q̂dd

�
+ (1� �d � 
d0) q̂

HQ
d

3�ad
8�d

+ (1� �d0 � 
d) q̂
HQ
d0

�ad0

8�d

�r�2 (�d + �
d) + 
dq̂dd0
�ad0

8�d
+ 
d0 q̂

d0

d

3�ad
8�d

: (A25)

Consider now 
d. We have that

d�̂

d
d
= �q̂HQd0 �ad0 + (1� �d � 
d0) q̂

HQ
d

@�ad
@
d

+ (1� �d0 � 
d) q̂
HQ
d0
@�ad0

@
d

+
dûd(�ad; q̂

d(�ad; wd))

d
d
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d
d
:

Because @�ad
@
d

= 3�ad
8
d
, @�ad0
@
d

=
�ad0
8
d
, from (A14) and (A6) we obtain

d�̂

d
d
= ��ad0

�
q̂HQd0 � q̂dd0

�
+ (1� �d � 
d0) q̂

HQ
d

3�ad
8
d

(A26)

+(1� �d0 � 
d) q̂
HQ
d0

�ad0

8
d
� r�2 (
d + ��d) + q̂dd0

�ad0

8
+ 
d0 q̂

d0

d

3�ad
8
d

:

From (A25) and (A26) we obtain the �rst-order conditions

d�̂

d�d
= ��ad

�
q̂HQd � q̂dd

�
� r�2 (�d + �
d) +

�d

�d
= 0;

d�̂

d
d
= ��ad0

�
q̂HQd0 � q̂dd0

�
� r�2 (
d + ��d) +

�d


d
= 0;

where �d � (1� �d � 
d0) q̂
HQ
d

3�ad
8
+(1� �d0 � 
d) q̂

HQ
d0

�ad0
8
+
dq̂

d
d0
�ad0
8
+
d0 q̂

d0
d
3�ad
8
, giving

�d�ad

�
q̂HQd � q̂dd

�
+ r�2

�
�2d + �
d�d

�
= 
d�ad0

�
q̂HQd0 � q̂dd0

�
+ r�2

�

2d + ��d
d

�
:

Because the �rst-order conditions are symmetric, there exists a symmetric solution:

�A = �B = � and 
A = 
B = 
. Thus, ad = a = e�
�
2Z�

1
2 j
j

1
2 q. This also

implies that �A = �B, so q̂
HQ
d = e�

�HQ
2 q. Also, Hd =



�
, so q̂dd = e�

�
2
j
j

1
2

�
1
2
q and

q̂dd0 = (2� e�
�
2
�
1
2

j
j
1
2
)q. Thus, �aq̂dd = e

��
2 �

1
2 j
j

1
2 aq and


a
�
q̂HQd0 � q̂dd0

�
= 
ae�

�HQ
2 q � 2
aq � e��

2 �
1
2 j
j

1
2 aq;

which implies that

�ae�
�HQ
2 q + r�2�2 = j
j

�
2� e�

�HQ
2

�
aq + r�2
2 (A27)
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Because 

�
2 (�e�;�e��), there exists �̂ 2 (e��; e�) such that 
 = ��̂�. Substituting

in a = e�
�
2Z��̂

1
2 q, (A27) is equivalent to f

�
�̂
�
= 0, where

f
�
�̂
�
�
h�
2e

�HQ
2 � 1

�
�̂ � 1

i
e�

�HQ
2 e�

�
2 �̂

1
2Zq2 + r�2

�
�̂
2 � 1

�
= 0: (A28)

Note f (e��) < 0 < f (1) = 2
h
e
�HQ
2 � 1

i
e�

�HQ+�

2 Zq2 and f 0 > 0, so �̂ 2 (e��; 1)
for �HQ > 0, but �̂ = 1 if �HQ = 0. Comparative statics on �̂ follow because

max
�
@f
@r
; @f
@�2
; @f
@�

	
< 0 < min

n
@f
@Z
; @f
@q
; @f
@�HQ

o
. Further, @�̂

@�
= 0 if and only if

� =
1

1 +

�
q̂d
d0

q̂HQ
d0
� 1
�
�̂ + 2(1� q̂dd

q̂HQd
) +

2r�2(1���̂)
Zq̂HQd q̂dd

; 
 = ��̂� < 0;

giving (48). After substitution in �̂, we have

�̂6 � e�(�HQ+�)�̂Z2q4

2e�
�HQ
2

h
1 +

�
2e

�HQ
2 � 1

�
�̂
i
e�

�
2 �̂

1
2Zq2 � 3e���̂q2Z + r�2

�
1� 2��̂ + �̂2

� :
Note �̂6 � �̂4 if and only if gS � 0, where

gS �
�
2M + 2 (1�M) e�

�HQ
2 + 2e��

�
Zq2 + e�r�2

�
1� 2�M +M2

�
�2e�

�HQ
2

h
1 +

�
2e

�HQ
2 � 1

�
�̂
i
e�

�
2 �̂
� 1
2Zq2 � r�2

�
1� 2��̂ + �̂2

�
�̂

;

with

@gS
@�

= e�r�2
�
1� �2 + (��M)2

�
+fe�

�HQ
2 e�

�
2

h
1 +

�
2e

�HQ
2 � 1

�
�̂
i
�̂
� 1
2 �2e��gZq2:

Note that
h
1 +

�
2e

�HQ
2 � 1

�
�̂
i
�̂
� 1
2 is increasing and larger than 2 for �̂ 2 (e��; 1),

so @gS
@�
> 0. Also, @g

@�HQ
= � (1�M) e�

�HQ
2 Zq2+

�
1� �̂

�
e�

�HQ
2 e�

�
2 �̂
� 1
2Zq2. Because

M < e�� < �̂, we have that @g
@�HQ

< 0. De�ning �̂, �̂HQ1 so that gS
�
�̂; �̂HQ1

�
= 0,

Theorem 7 is proven.

Case (D): If 
d > e
�d�d,

@ad
@
d

= 0, so @ad0
@
d

= 0, and thus @�̂
@
d

= �ad0
�
q̂HQd0 � q̂dd0

�
�

r�2 (�� + 
) < 0, so 
 � e��. Similarly, if 
d < �e�d�d, @ad
@
d

=
@ad0
@
d

= 0, so
d�̂
d
d

= �ad0
�
q̂HQd0 � q̂dd0

�
� r�2 (��d + 
d) : Because �d0 > 0 > 
d, q̂

HQ
d0 < qd0 < q̂dd0.

Also, � 2 (�1; 1). Thus, d�̂
d
d

> 0 for 
d < �e�d�d, so it must be that 
d � �e�d�d.
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Therefore, Case (D) is suboptimal.

All that remains to be shown is Theorem 8, by showing that �̂5 � �̂6 when �HQ
is large enough. Note �̂5 � �̂6 if and only if gE � 0, where

gE � 2e�
�HQ
2

h
1 +

�
2e

�HQ
2 � 1

�
�̂
i
e�

�
2 �̂
� 1
2Zq2 + r�2

�
1� 2��̂ + �̂2

�
=�̂

�4e�
(�HQ+�)

2 Zq2 � 2r�2 (1 + �) : (A29)

Note @gE
@�̂
=

f(�̂)
�̂
2 = 0. Note that

@gE
@�HQ

=

�
�
�
1� �̂

�
�̂
� 1
2 + 2

�
e�

(�HQ+�)

2 Zq2 � 0

if and only if �̂ � 3 � 2
p
2: Recall �̂ is strictly decreasing in �HQ. This implies that

gE an inverse U-shaped function of �HQ and that there is a unique �
0
HQ, de�ned by

�̂(�
0
HQ) = 3� 2

p
2, such that @gE

@�HQ
> 0 for �HQ < �0HQ and

@gE
@�HQ

< 0 for �HQ > �
0
HQ.

Next, we will show that gE > 0 for all �HQ � �
0
HQ and, thus, for all �̂ � 3 � 2

p
2.

Note that, from (A28), we can express (A29) as

gE = 4e
�
�HQ
2 e�

�
2

�
�̂
� 1
2 � 1

�
Zq2 +

f
�
�̂
�

�̂
+ 2r�2

�
1

�̂
� 2�� 1

�
:

The �rst term is positive because �̂ < 1, the second term is zero, and the third term

is positive for all 1
�̂
> 3, which is satis�ed for �̂ � 3 � 2

p
2 < 1

3
. This implies that

gE(�HQ) > 0 for all �HQ � �
0
HQ. Thus, if gE (0) � 0, gE > 0 for all �HQ > 0,

and thus de�ne �̂HQ2 � 0; otherwise, if gE (0) < 0, there is a unique �̂
HQ
2 such that

gE(�̂
HQ
2 ) = 0, with �̂HQ2 < �

0
HQ, completing the proof of Theorem 8.

Proof of Corollary 2. Follows directly from equation (A24).
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